

A-985

INTRODUCTION

Amoxicillin is an aminopenicillin that has been in clinical use for decades. Despite its abundant use, amoxicillin pharmacokinetics (PK) has been described in a few studies only. Some have shown nonlinearity in absorption¹⁻⁵. A population PK model of oral amoxicillin tablets is not yet available. The aim of this study was to describe the population PK of oral amoxicillin with a focus on absorption and consequences for exposure.

METHODS

Re-used data of trial 25000/360 (Smith-Kline Beecham, 1994): • 28 healthy male volunteers

- amoxicillin/clavulanic acid tablets on 2 days (randomized order) at the start of a meal with 200ml water:
- 1. twice-daily (b.i.d.) 875/125mg or 500/125mg
- 2. three-times daily (t.i.d.) 500/125mg or 250/125mg
- blood samples: 0,0.5,1,1.5,2,2.5,3,4,6,8,10,12 h (t.i.d. ≤8h)
- 140 concentration-time profiles with 1428 samples.

Non-compartmental PK analysis with PKSolver.

Population PK analysis with nonlinear mixed effect modelling: NONMEM 7.2 (FOCE+I). Model selection criteria: decrease in objective function value, diagnostic plots and visual predictive checks (VPC's). Comparison of:

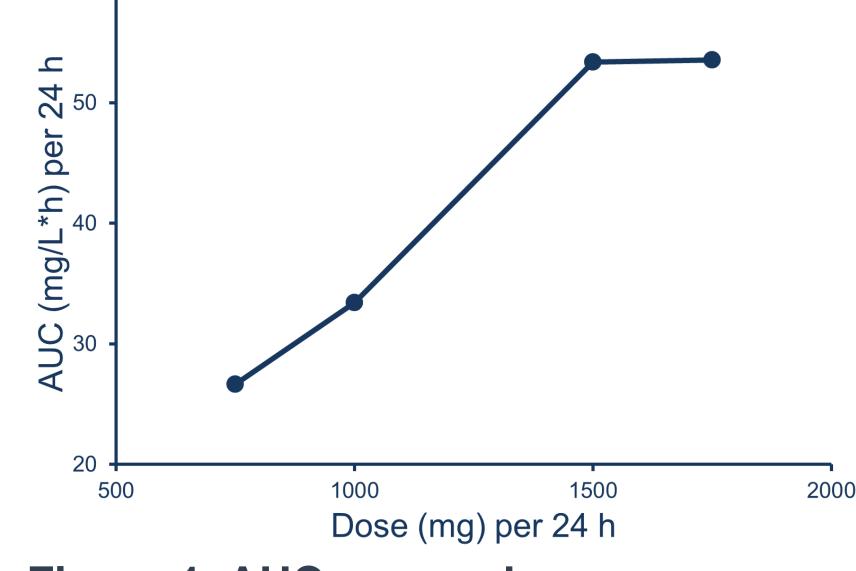
- first-order / zero-order / Michaelis-Menten absorption
- lag-time / transit compartments
- with / without absorption storage compartment
- one / two distribution compartments.

A non-parametric bootstrap method was performed to obtain the 95%CI of each parameter.

Monte-Carlo simulations (n=5000) with several amoxicillin dosing regimens.

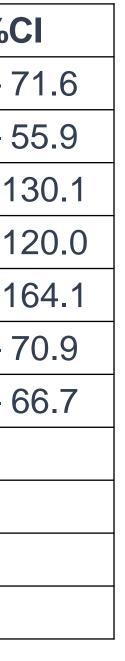
Table 1. Pupulation Pri parameters				
Parameter	Estimate	95%CI	BSV (%)	95%0
BIO (-)	0.7 (fixed)	_	35.1	29.2 - 7
MTT (h)	0.524	0.455 – 0.591	46.8	38.1 – 5
N (-)	4.41	3.29 - 8.20	112.7	73.5 – 1
Vm (mg/h)	1220	960 - 2036	31.9	21.5 – 1
Km (mg)	287	191 – 572	98.7	78.5 – 1
Vc (L)	27.7	25.0 - 29.6	34.4	26.4 - 7
CL (L/h)	21.3	20.1 - 22.2	25.8	17.0 - 6
Q (L/h)	1.70	1.07 - 3.03		
Vp (L)	3.02	2.48 - 3.89		
Add. error	0.0524	0.0406 - 0.700		
Prop. error	0.0824	0.0680 - 0.0931		

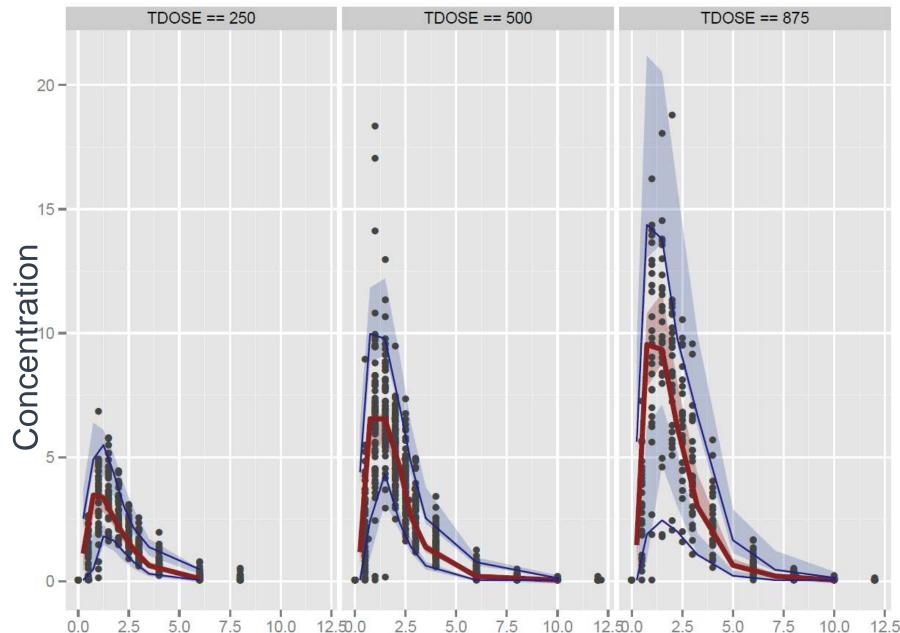
Table 1 Population PK narameters


Km: amount corresponding to 50% Vm Vc: central volume of distribution CL: clearance **Q:** intercompartmental clearance **Vp:** peripheral volume of distribution

Nonlinear absorption pharmacokinetics of amoxicillin F. de Velde, B.C.M. de Winter, B.C.P. Koch, T. van Gelder, J.W. Mouton Erasmus University Medical Center, Rotterdam, The Netherlands On behalf of COMBACTE consortium

RESULTS

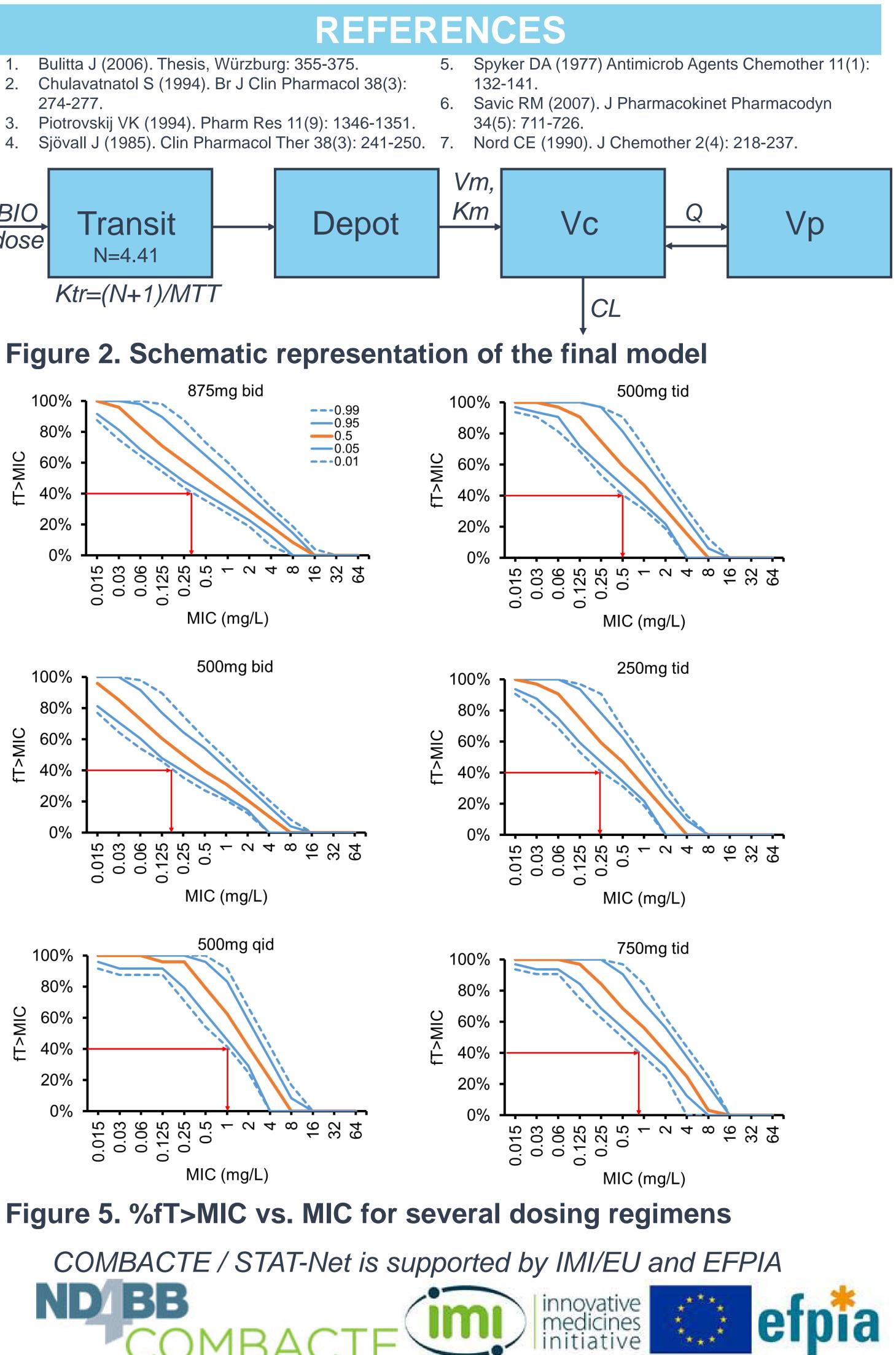

Non-compartmental PK analysis: Figure 1 shows a non-proportional increase in AUC_{0-24h} to the dose. A dose-dependent saturation was also shown for C_{max} $T_{\rm max}$ increased with rising doses. $t_{1/2}$ was comparable for the 4 doses.


Population PK analysis: Amoxicillin PK was best described by a transit compartment model⁶ followed by Michaelis-Menten absorption, 2 distribution compartments and first-order elimination (figure 2). The PK parameters estimates and between-subject variability (BSV) are described in table 1. None of the (limited available) covariates were retained in the final model. A combined error model was used. The diagnostic plots and VPC's (figure 3+4) indicate a good predictive performance.

1000/250, 750/375 mg/day).

Time Figure 4. VPC's (per time dose) *red+blue lines:* 50th, 5th,95th percentile of observations; *red+blue areas*: 95%Cl of corresponding percentiles of predictions.

Monte Carlo simulations: Results shown in figure 5.


Adverse events: Diarrhoea was most frequently reported. The frequency declined with total daily doses (5, 4, 2, 2 events with 1750/250, 1500/375,

> Population predictions Individual predictions 4 6 8 10 12 Time

Figure 3a-c. Diagnostic plots

Amoxicillin absorption is dose-dependent and best described by a Michaelis-Menten absorption model. A saturable absorption may be wasteful in case of high doses and can lead to an increased risk of adverse events and disturbances in intestinal microflora⁷. Twice daily amoxicillin dosing is unfavourable to three- or four-times daily dosing. These results can be used for dose optimization and breakpoint setting.

274-277. BIO dose Transit N=4.41 Ktr = (N+1)/MTT875mg bid 100% 80% 60% 40% 20%

Tel. +31-10-7033202

CONCLUSIONS