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Summary. We suggest a wild bootstrap resampling technique for nonparametric inference on transition probabilities in a
general time-inhomogeneous Markov multistate model. We first approximate the limiting distribution of the Nelson–Aalen
estimator by repeatedly generating standard normal wild bootstrap variates, while the data is kept fixed. Next, a transfor-
mation using a functional delta method argument is applied. The approach is conceptually easier than direct resampling for
the transition probabilities. It is used to investigate a non-standard time-to-event outcome, currently being alive without
immunosuppressive treatment, with data from a recent study of prophylactic treatment in allogeneic transplanted leukemia
patients. Due to non-monotonic outcome probabilities in time, neither standard survival nor competing risks techniques apply,
which highlights the need for the present methodology. Finite sample performance of time-simultaneous confidence bands for
the outcome probabilities is assessed in an extensive simulation study motivated by the clinical trial data. Example code is
provided in the web-based Supplementary Materials.
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1. Introduction
The present article is motivated by investigating the impact of
graft-versus-host-disease (GvHD) prophylaxis on the proba-
bility to be alive without immunosuppressive therapy (IST) in
leukemia patients who have undergone allogeneic haematopoi-
etic cell transplantation. The challenge is that patients
commonly require multiple IST episodes after transplanta-
tion, while at the same time always being at the risk of
death. This type of data may occur in many clinical research
questions whenever the interesting endpoint may appear in
multiple episodes over time. Examples include the occurrence
of adverse event or disease episodes after a specific therapy,
or the time under a specific treatment, which can stop and
start again.

Occurrence of GvHD is commonly analyzed via compet-
ing risks (e.g., Kalbfleisch and Prentice, 2002; Lazaryan
et al., 2016); see also Pfirrmann et al. (2011) for general
discussions of competing risks in leukemia trials. Here, the
cumulative incidence function, that is, the cumulative prob-
ability of GvHD occurrence, is the probability parameter of
interest. The aim of successful prophylaxis is, however, not
solely the reduction of GvHD incidence, but also to concur-
rently increase the proportion of patients being alive and not
immunosuppressively treated in the course of disease. Con-
sidering being alive without IST as a novel and non-standard
time-to-event outcome has recently been suggested by, for

example, Schmoor et al. (2013) and Eefting et al. (2016). Here,
a challenge is that the proportion of patients alive without
IST is non-monotonic in time. Thus, competing risks tech-
niques do not apply. Both Schmoor et al. (2013) and Eefting
et al. (2016) suggested the use of multistate models (e.g.,
Andersen et al., 1993; Beyersmann et al., 2012) to jointly
model changes of IST status while always being at the risk of
death. However, a formal comparison of the outcome probabil-
ities was not provided. The applied aim of the present article
will be to investigate the impact of GvHD prophylaxis on the
probability to be alive without IST using time-simultaneous
confidence bands.

Such time-simultaneous inference is complicated by the
fact that the asymptotic covariance function of the Aalen–
Johansen estimator (Aalen and Johansen, 1978), the
canonical nonparametric estimator of the matrix of transition
probabilities, does not exhibit independent increments of the
Gaussian limit process. To attack such situations, Lin and co-
workers developed a simple and computationally convenient
resampling procedure based on martingale representations
(Lin et al., 1993, 1994). Here, one keeps the data fixed and
replaces the unknown martingale increments using standard
normal variates. Next, the distribution of the estimator is
approximated by repeatedly generating such variates, see
Martinussen and Scheike (2006) for a textbook treatment. In a
nutshell, the idea is to replace asymptotic normality by finite

© 2018, The International Biometric Society 1

http://orcid.org/0000-0003-2625-4167


2 Biometrics

sample normality with approximately the right covariance,
while basing the resampling on martingale representations
does not require the strict independent and identically dis-
tributed (iid) setup of the standard bootstrap. The approach
is an example of the more general “wild bootstrap,” which
was originally developed for heteroscedastic regression analy-
sis (e.g., Liu, 1988; Mammen, 1992; Davidson and Flachaire,
2008). Here, independent random variates with expectation
zero and variance one—called multipliers—are used.

Lin (1997) applied the wild bootstrap to construct
time-simultaneous confidence bands for the cumulative inci-
dence function from right-censored competing risks data.
Beyersmann et al. (2013) as well as Dobler et al. (2017)
recently gave a thorough mathematical treatment of this
approach also allowing for independent left-truncation and
general multipliers. Extensions to more complex multistate
models are, however, rare in the current literature. The
major challenges are involved martingale representations of
the Aalen–Johansen estimator (Andersen et al., 1993, p.
320). Thus, we first apply wild bootstrap resampling to
approximate the distribution of the multivariate standardized
Nelson–Aalen estimator of the cumulative transition hazards.
Using a functional delta method-type argument, we conclude
that the wild bootstrap approximation for the Nelson–Aalen
estimator, transformed according to the Hadamard deriva-
tive of the product integral (Gill and Johansen, 1990), mimics
the limit distribution of the Aalen–Johansen estimator. Our
approach considerably simplifies the original arguments given
by Lin (1997) and Beyersmann et al. (2013) for compet-
ing risks and generalizes to arbitrary time-inhomogeneous
Markov processes with finite state space subject to inde-
pendent left-truncation and right-censoring. This general
formulation allows for reversible multistate models, such as
the so-called illness-death model with (IST-) recovery applied
in Schmoor et al. (2013), as well as irreversible models; see
Liu et al. (2008) for an example in the context of current
leukemia-free survival. Allowing for left-truncation is moti-
vated by observational studies on, for instance, pregnancy
outcomes (Beyersmann et al., 2012).

The present article is organized as follows: multistate mod-
els and the connection between cumulative transition hazards
and transition probabilities are briefly presented in Section 2.
Wild bootstrap resampling for the multivariate Nelson–Aalen
estimator and the main result regarding the transforma-
tion onto the Aalen–Johansen estimator is introduced in
Section 3. Section 4 considers constructing simultaneous con-
fidence bands using the present resampling approach. A
simulation study investigating coverage probabilities of such
bands is reported in Section 5, where the simulation setup
is closely motivated by the leukemia data of Schmoor et al.
(2013), which is re-analyzed in Section 6. A discussion is
offered in Section 7. Technical proofs as well as example R code
applied to freely accessible data are deferred to the web-based
Supplementary Material.

2. Multistate Models

Let (Xt)t≥0 be a time-inhomogeneous Markov process with
state space S = {0, 1, 2, . . . ,J }, J ∈ N, and càdlàg sample
paths, that is, right-continuous with left-hand limits. Consider

the transition probability matrix P(s, t) = {
Plj(s, t)

}
l,j∈S with

transition probabilities

Plj(s, t)=P(Xt =j|Xs = l)=P(Xt =j|Xs = l,Past) , s≤ t, l, j∈S.

We assume the existence of transition hazards αlj(t) fulfilling

αlj(t) · dt = P (Xt+dt = j|Xt− = l) , l, j ∈ S, l �= j

and define αll(t) = −∑J
j=0,j �=l

αlj(t) for all l ∈ S. The connec-
tion between transition hazards and transition probabilities is
established through product integration (Aalen and Johansen,

1978): Writing A(t) = {
Alj(t)

}
l,j∈S =

{
t∫

0

αlj(u)du

}
l,j∈S

, the

transition probability matrix can be expressed as a product
integral

P(s, t) = {
I + dA(u)

}
, (1)

where I is the (J + 1) × (J + 1) identity matrix. The right-

hand side of (1) is the limit of
∏K

k=1
{I + �A(tk)} for

increasingly finer partitions s = t0 < t1 < . . . < tK−1 < tK = t,
K ∈ N, where the (l, j)-th entry of �A(tk) is defined by
Alj(tk) − Alj(tk−1).

3. Wild Bootstrapping the Aalen–Johansen
Estimator

Let n be the number of individuals under study, where the
individual trajectories are conditionally independent repli-
cates of the process (Xt)t≥0 given the states occupied at
time origin. Assume that observations are subject to indepen-
dent left-truncation and right-censoring (see Andersen et al.,
1993, Chapter III for details), which may be state-dependent.
Applying the usual counting process notation, the process
Ni;lj(t) counts the number of observed direct transitions of
individual i, i = 1, . . . , n, from state l into state j in the time
interval [0, t]. In contrast to the simpler standard survival and
competing risks settings, Ni;lj(t) may have values greater than
one in general multistate problems. Let

Yi;l(t)=1(individual i is observed to be in state l just prior to t)

denote the at risk indicator for an observed (l, j)-transition
of individual i just prior to t. Aggregation over all individuals
yields Nlj(t) = ∑n

i=1
Ni;lj(t) and Yl(t) = ∑n

i=1
Yi;l(t). Then, the

Nelson–Aalen estimator Â(t) of A(t) has (l, j)-th entry, l �= j,

Âlj(t)=
t∫

0

1
{
Yl(u)>0

}dNlj(u)

Yl(u)
=

n∑
i=1

t∫
0

1
{
Yl(u)>0

}dNi;lj(u)

Yl(u)
.

The diagonal entries of Â(t) are such that the sum of each row

equals 0. We note that Âlj(t) is a finite sum with increments
at the observed transition times from state l to j.
Under standard regularity assumptions, Theorem IV.1.2 in
Andersen et al. (1993) provides convergence in distribution
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on compact time intervals

W = √
n ·

(
Â − A

)
D−→ U = (Ulj)l,j∈S , (2)

where the non-diagonal entries of U are independent Gaus-
sian martingales with Ulj(0) = 0 and almost surely continuous
sample paths. The diagonal entries of U are also such that the

sum of each row equals 0. Convergence in distribution “
D−→” is

considered for n → ∞ on the matrix-valued càdlàg function
space endowed with the product Skohorod topology. Weak
convergence in (2) is proven using martingale arguments,
because it holds that

√
n

{
Âlj(t)−Alj(t)

}
−√

n

⎡⎣ t∫
0

1
{
Yl(u)>0

}
Yl(u)

d

{
n∑

i=1

Mi;lj(u)

}⎤⎦ P−→0,

(3)

with transition- and individual-specific martingales Mi;lj(t) =
Ni;lj(t) −

t∫
0

αlj(u)Yi;l(u)du. We now use the martingale repre-

sentation (3) to introduce the resampling procedure.
In order to approximate the Gaussian limit process U in

(2), we extend the resampling scheme proposed by Lin (1997)
to the multivariate Nelson–Aalen estimator. The idea is to
keep the data fixed and substitute the unknown martingale
quantities dMi;lj(t) with dNi;lj(t) times a standard normal
random variable. “Keeping the data fixed” means that all
derivations are conditioned on the available data. To be con-
crete, consider a (J + 1) × (J + 1) matrix-valued process ξ

with non-diagonal entries,

ξlj(t) = √
n ·

n∑
i=1

t∫
0

Gi;lj(u) · 1{
Yl(u) > 0

} dNi;lj(u)

Yl(u)
, l �= j,

(4)

which can be derived from the martingale representation
of the Nelson–Aalen estimator (3) by introducing iid stan-
dard normal variables Gi;lj(u). This is the typical choice in
biometrical applications; however, the theory even allows
for more general multipliers with expectation 0 and vari-
ance 1. The diagonal entries of ξ are again such that the
sum of each row equals 0. Note that (4) requires a random
multiplier for each observed transition time of each indi-
vidual. The resampling in (4) extends the wild bootstrap
of Lin (1997) and Beyersmann et al. (2013) to all single

entries of the multivariate Nelson–Aalen estimator Â, allow-
ing for repeated l → m transitions of an individual. As a
result, ξ asymptotically mimics the distribution U in (2)
given the data, see Web Appendix S1 for details. Mathe-
matically, the wild bootstrap is not required at this stage,
because the process U in (2) has independent increments.
However, this property gets lost when transforming ξ for
making inference on the transition probabilities. Plugging the
Nelson–Aalen estimator Â into (1), the transition matrix P

can be estimated by means of the Aalen–Johansen estimator

(Aalen and Johansen, 1978)

P̂(s, t) =
{

I + dÂ(u)
}

,

which is a finite matrix product over all event times in
(s, t], s < t. Applying a functional delta method-type argu-
ment, Theorem IV.4.2 in Andersen et al. (1993) states
convergence in distribution on compact time intervals,

B (s, ·) = √
n ·

{
P̂(s, ·) − P(s, ·)

}
D−→

·∫
s

P(s, u)dU(u)P(u, ·),

(5)

where U is as in (2). At this stage, resampling is the method of
choice, because the asymptotic Gaussian process lacks inde-
pendent increments. However, martingale representations for
(5) are much more involved compared to (3), see Andersen
et al. (1993), equation (4.4.7) for general multistate models,
and this is even true for the special competing risks model
(Lin, 1997). To overcome this issue, Web Appendix S1 proves
that, given the data,

ζ(s, ·) =
·∫

s

P̂(s, u)dξ(u)P̂(u, ·) (6)

possesses the same limit behavior as B (s, ·). Consequently,
(5) can be approximated in two subsequent steps: First, we
resample on the hazard scale by means of generating a large
number of replicates ξ, and second, we transform them via
(6) according to the Hadamard derivative of the original
hazards-to-probabilities functional in order to obtain prob-
ability statements. This is not unlike a Bayesian approach,
but explicitly builds on functional delta method asymptotics.
Note that quantity (6) includes the resampling of Lin (1997)
as a special case. Unlike resampling with replacement from
the individual trajectories under an iid setup (Efron, 1981),
resampling based on (6) works in the more general martin-
gale setup outlined above, see Andersen et al. (1993), Section
IV.1.4. for an in-depth discussion. Further, the present resam-
pling scheme estimates n different distributions by means of
only n individuals, which is why Mammen (1992) called such
a procedure “wild.” We also emphasize the close link between
relation (4) and general wild bootstrap representations con-
sidered in, for instance, Pauly (2011). Note that the procedure
works due to binary increments dNi;lj(u), which is a natural
assumption, because the entire theory is developed under a
time-continuous framework (Andersen et al., 1993) implying
that at most one individual l → j transition is observed at
time t.

The two key-steps of the proof are as follows: in the spirit
of the functional delta transformation in (6), the Continuous
Mapping Theorem first verifies that

·∫
s

P(s, u)dξ(u)P(u, ·) D−→
·∫

s

P(s, u)dU(u)P(u, ·),
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in probability, that is, given the data. Then, uniform consis-
tency of the Aalen–Johansen estimator in combination with
Lenglart’s inequality proves

sup
t∈[s,τ]

∣∣∣∣∣∣
t∫

s

P̂(s, u)dξ(u)P̂(u, t) −
t∫

s

P(s, u)dξ(u)P(u, t)

∣∣∣∣∣∣ P−→0 in probability.

Here, | · | denotes the Euclidean norm for matrices. The
theoretical requirement for the correct wild bootstrap approx-
imation on [s, τ] is that the asymptotic probabilities of
non-empty risk sets are bounded away from zero on that inter-
val of interest. This is similar to standard survival studies,
where τ is commonly chosen as the largest observed event
time.

4. Simultaneous Confidence Bands

The aim of the present section is to utilize the wild bootstrap
derived in Section 3 for the convenient construction of asymp-
totic confidence bands for the outcome probabilities of interest
and statistical two-sample tests for independent samples. For
that purpose, fix time s, and define P̂lj(s, t) and ζlj(s, t) as the
(l, j)-th entries of the corresponding matrix-valued processes

P̂(s, t) and ζ(s, t), l, j ∈ S, s < t. Introduce

Clj(s, t) = √
n · g(t)

[
φ

{
P̂lj(s, t)

} − φ
{
Plj(s, t)

}]
as the weighted and transformed variant of the (l, j)-th entry
of B(s, t), where g(·) is a weight function and φ(·) a transfor-
mation with non-zero continuous derivative dφ(·). Different
weightings lead to different types of confidence bands, whereas
the rationale of transformations is to improve small sample
performance. As suggested in Lin (1997), we focus on the
log-log transformation φ(x) = log{(− log(1 − x)}, x ∈ (0, 1) to
ensure that the confidence bands are contained in [0, 1]. Con-
sider the weight function

g(t) = {P̂lj(s, t) − 1} · log{1 − P̂lj(s, t)}√
n · v̂ar{P̂lj(s, t)}

,

with t ≥ s and v̂ar{P̂lj(s, t)} denoting the empirical variance of
the wild bootstrap realizations of ζlj(s, t) divided by n. Fol-
lowing Chapter IV.3.3 in Andersen et al. (1993), the resulting
bands for the transition probability are called equal-precision
(EP) bands (cf. also the choice in Lin, 1997).
Applying a functional delta method-type argument, the con-
ditional distribution of

Ĉlj(s, t) = g(t) · dφ{P̂lj(s, t)} · ζlj(s, t) (7)

can be utilized to approximate the distribution of Clj(t). Let
qα be the conditional (1 − α) quantile such that, given the
data,

P

{
sup

t∈[t1,t2]

|Ĉlj(s, t)| > qα

}
= α, (8)

where α ∈ (0, 1) and s ≤ t1 < t2 ≤ τ; see Section 6 for an exam-
ple of choosing t1 and t2 in practice. Then, an asymptotic
(1 − α) confidence band for φ

{
Plj(s, t)

}
is given by

φ
{
P̂lj(s, t)

} ± qα√
n · g(t)

, t ∈ [t1, t2]. (9)

Applying the inverse function φ−1(·), a confidence band for
Plj(s, t) can be derived.

The present approach can easily be extended to construct

confidence bands for the difference P
(1)
lj − P

(2)
lj of two tran-

sition probabilities from two independent samples. In the
analysis of leukemia patients below, we will be interested in
the difference of the probabilities to be alive without IST
between prophylaxis groups. Let

D(s, t) = k(t)
[
P̂

(1)
lj (s, t)−P̂

(2)
lj (s, t)−

{
P

(1)
lj (s, t) − P

(2)
lj (s, t)

}]
,

(10)

where k(t) is another positive weight function. The distribu-
tion of quantity (10) can be approximated by

D̂(s, t) = k(t)

{
ζn1;lj(s, t)√

n1

− ζn2;lj(s, t)√
n2

}
, (11)

where ζnr ;lj(s, t) are the wild bootstrap versions of
√

nr ·{
P̂

(r)
lj (s, t) − P

(r)
lj (s, t)

}
, r = 1, 2, and sample sizes nr in gro-

up r. For our purposes, we choose k ≡ 1. This choice yields
the approximate (1 − α) confidence band for the difference of
the two transition probabilities given by

{
P̂

(1)
lj (s, t) − P̂

(2)
lj (s, t)

}
± q̃α, (12)

where the quantile q̃α is approximated such that

P

{
sup

t1≤t≤t2

|D̂(s, t)| > q̃α

}
= α. The confidence band for the

difference can also be viewed as a Kolmogorov–Smirnov-type
asymptotic level α test.

In practice, the wild bootstrap for the Aalen–Johansen esti-
mator can be realized in the statistical software R as follows:
the data file is assumed to be arranged in “long” format
(Beyersmann et al., 2012), that is, each row represents one
individual “at risk” for a certain transition. The columns indi-
cate transition-type, censoring status, and when the patient
started and stopped being at risk for a certain transition. We
then implement the following algorithm:

1. For each observed event time u and each l → j transition
• compute the number of observed l → j transitions at

u and the number of individuals in state l just prior
to u.

• generate as many Gi;lj(u) as l → j transitions are

observed at u and compute P̂lj(s, u) and P̂lj(u, ·).
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2. Compute ξ using (4) and arrange the increments dξ in
a (J + 1) × (J + 1) matrix for each u.

3. Compute ζ via (6), which is used to derive one replicate

of Ĉlj(s, t) in (7).
4. Repeat steps (1)–(3) m times, where m is the number of

bootstrap iterations (say 1000). The empirical (1 − α)

quantile of the m replicates supt∈[t1,t2] |Ĉlj(s, t)| yields an
approximation of the desired quantile qα in (8).

The R-package etm (Allignol et al., 2011) provides fast com-

putation of the Aalen–Johansen estimator P̂ . Example R-code
applying the algorithm to a freely accessible dataset is avail-
able as Supplementary Material, cf. Web Appendix S2 for
explanations.

5. Simulation Study

The present simulation study uses the published data of
Schmoor et al. (2013), which motivated the methodological
developments of this article, as a template. The setting is an
illness-death model with recovery as illustrated in Figure 1.
The data is re-analyzed in Section 6. Data generation follows
the simulation technique suggested by Fiocco et al. (2008)
and Allignol et al. (2011). More precisely, the increments of
the Nelson–Aalen estimators computed from the published
data are utilized to determine the transition time and type
by means of the multistate simulation algorithm described in
detail in Beyersmann et al. (2012), Section 8.2. The idea is to
generate multistate trajectories as a sequence of competing
risks experiments. Random right-censoring follows a multino-
mial experiment with probabilities equal to the increments
of the observed censoring Kaplan–Meier estimator (Web Fig-
ure S3). In analogy to the original data, all individuals are
assumed to start in state 1 of being alive and under IST.
More details regarding data generation can be found in Web
Appendix S3.

We consider five different scenarios: the original sample
size of 103 patients in the treatment group is increased to
200, 300, 400, and 500 patients. The focus is on P10(0, t),
which is one of the relevant quantities of interest within the
real data analysis of Section 6. For each scenario, we con-
sider 1000 simulated studies, and the empirical approximation
of the quantile qα within each study is based on 1000 real-
izations of ζ using standard normal multipliers. We focus
on log-log transformed EP bands restricted to the intervals
[t1, t2] ∈ {[4, 12], [4, 24], [4, 48]} interpreted as time in months
in order to investigate different interval widths. The left limit

Figure 1. Illness-death model with recovery based on the
randomized clinical trial data example with transition-specific
hazards α01(t), α02(t), α10(t), and α12(t). Patients start in
state 1 of being under IST.

Table 1
Coverage probabilities of log-log EP confidence bands (CBs)
regarding P10(0, t) (1000 bootstrap iterations with standard
normally distributed multipliers) separately computed for
each sample size and [t1, t2] considered in the simulation
study of Section 5. The confidence level is set to 95%.

Coverage in % on [t1, t2]

n [4, 12] [4, 24] [4, 48]

103 93.4 92.7 92.9
200 94.4 94.3 93.8
300 93.6 93.5 94.0
400 95.4 94.7 93.7
500 94.9 94.3 94.2

of the intervals equals 4, because IST is mandatory for around
the first three months after transplantation and, consequently,
no 1 → 0 transitions are available beforehand. The confidence
level is set to 0.95.

According to Table 1, coverages are slightly too low for
the smallest sample size of 103 patients (≈ 93%). Concerning
moderate and large sample sizes, the empirical coverage prob-
abilities approach the confidence level on all time intervals.
We also observe that a shorter time interval of interest leads
to an increased performance of the wild bootstrap confidence
bands. The intuition is that a smaller time period of interest
leads to a better coverage, since less statistical uncertainty
has to be captured.

We also perform three additional simulation studies (Web
Appendix S4): First, the construction of confidence bands is
based on centered Poisson multipliers with variance one. They
are motivated by the fact that they possibly mimic the count-
ing process data structure more closely, which has lead to a
slightly improved performance in the more simple compet-
ing risks setting (Beyersmann et al., 2013; Dobler and Pauly,
2014). Following recent findings in Dobler et al. (2017), heuris-
tic arguments suggest that second order correctness may be
achieved by using multipliers with unit skewness, which does
not hold for the standard normal choice. However, the present
results showed no clear preference for using Poisson multi-
pliers throughout all scenarios. Second, we investigate the
robustness of the procedure regarding the number of boot-
strap iterations. For that purpose, we change the original
number of iterations in both directions. It is shown that devi-
ations are negligible compared to the current results when
2000 replicates are used, whereas a reduction to only 500
replicates results in generally lower coverages particularly for
the broadest (and most challenging) time interval [4, 48]. A
third study demonstrates the validity of the wild bootstrap in
the presence of two different external random left-truncation
mechanisms. However, a larger sample size is needed in order
to obtain comparable results as without left-truncation. The
intuitive reason is that less information is available due to
delayed study entry, where some individuals never enter the
study because of a terminal event before potential study entry.
Those individuals under study, however, often do not con-
tribute to early risk sets.
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6. Being Alive and Without IST as an Outcome
in Leukemia Trials

We now re-analyse the study data on allogeneic haematopoi-
etic cell transplantation in leukemia patients (e.g., Socié et al.,
2011; Schmoor et al., 2013) that motivated our methodologi-
cal developments. In this context, GvHD after transplantation
is a severe side effect inducing increased morbidity and
mortality. The original study hypothesized that Anti-T-cell
globulins decrease the incidence of GvHD. Studies on GvHD
prophylaxis are often based on a competing risks framework
(see e.g., Kalbfleisch and Prentice, 2002; Lazaryan et al.,
2016); however, an additional aim of successful GvHD pro-
phylaxis is to increase the proportion of patients that are
both alive and do not require IST. Therefore, Socié et al.
(2011) compared the impact of standard GvHD prophy-
laxis with and without pretransplantation Grafalon (formerly
ATG-Fresenius S = ATG-F) medication on the time under
IST in 201 randomly assigned patients (Grafalon n = 103,
control n = 98). Since multiple episodes of IST are commonly
observed during follow-up, an illness-death model with recov-
ery was applied accounting for the time-dependent nature of
IST. Besides death and censoring, this setting allows patients
to switch back and forth between “IST” and “no IST.” A

multistate pattern is given in Figure 1. All transplants were
allogeneic from unrelated donors; consequently, all patients
required IST for around 3 months after transplantation. Cox
proportional hazards models showed a significant decrease
in the hazard of being alive and under IST in Grafalon
treated patients. The result was graphically supported by
the comparison of the corresponding Aalen–Johansen esti-
mators (Schmoor et al., 2013). The latter estimates the
non-monotonic probabilities in time of being alive and either
under or free of IST; however, a formal comparison of the
probabilities of interest was not provided. The present article
completes this approach using confidence bands for a two-
group comparison of the outcome probabilities of interest.

The construction of confidence bands is based on 1000 real-
izations of ζ using standard normal multipliers. The empirical
means and variances of ξ and ζ showed good compliance com-
pared to the theoretical limit quantities stated in Section 3
(cf. Web Appendix S5).

Simultaneous 95% log-log transformed EP confidence
bands for the probabilities of being alive and either under
or free of IST within each treatment group are displayed
in Figure 2 on the time interval [t1, t2] = [4, 48] months. For
comparison, log-log transformed 95% pointwise confidence

Figure 2. Upper panels: estimated probability to be alive and free of IST. Lower panels: estimated probability to be alive
and under IST (black) for the Grafalon (left panels) and control group (right panels). 95% log-log pointwise confidence intervals
(light gray) and log-log EP confidence bands (dark gray) in the time interval [4, 48] months after transplantation are included.
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Figure 3. Left panel: estimated difference between Grafalon and control group regarding the probability to be alive and
free of IST. Right panel: estimated difference between Grafalon and control group regarding the probability to be alive and
under IST. 95% linear confidence bands (light gray) and 95% pointwise confidence intervals (dark gray) in the time interval
[4, 48] months after transplantation are included.

intervals are included. Confidence bands are only slightly
broader than the pointwise 95% confidence intervals. The dis-
tinct peak of the upper confidence limit corresponding to the
probability of being alive and under IST in Grafalon treated
patients (lower left panel in Figure 2) is caused by instable
weights for the latest timepoints due to small risk sets at the
end of the study. Comparing the two treatment groups, the
bands regarding both survival probabilities do not overlap
starting at around 12 months post transplantation.

For statistical verification, Figure 3 displays their difference
accompanied by the 95% linear confidence bands and 95%
pointwise confidence intervals. We find a significant differ-
ence between Grafalon-treated patients and control patients,
because both confidence bands exclude the “zero-effect” (hor-
izontal dashed lines) for major parts of t ∈ [4, 48]. The bands
demonstrate an increased probability of being alive and free
of IST and a reduced probability of being alive and under IST
as compared to control. The medical implication is that the
addition of Grafalon to standard GvHD prophylaxis results in
an increased proportion of patients being alive and not under
IST after transplantation.

7. Discussion

The present article developed a wild bootstrap resampling
technique for the Aalen–Johansen estimator for general time-
inhomogeneous Markov multistate models. It allows for
independent left-truncation, right-censoring as well as for
degenerated initial distributions. The proposed approach first
approximates the limiting distribution of the standardized
Nelson–Aalen estimator. Afterward, the resulting quantities
are transformed to approximate the limiting distribution of
the Aalen–Johansen estimator. Compared to, for example,
Lin (1997) and Beyersmann et al. (2013), the procedure
considerably simplifies both computations and mathemati-
cal derivations, because involved martingale representations
are avoided in favor of the much simpler representation
of the Nelson–Aalen estimator. Contrary to the standard
bootstrap approach with replacement, our technique does
not require a strict iid setup, but allows for conditionally

independent trajectories given the initial state and possibly
state-dependent left-truncation and right-censoring. Simula-
tion results found satisfactory performance of the confidence
bands in various settings. The applied log-log transformation
improved coverage particularly for small sample sizes (results
not shown). We investigated the performance of standard nor-
mal multipliers, which are the typical choice in biometrical
applications, and centered Poisson multipliers with variance
one. Differences between the two choices were negligible, and
the choice of standard normal multipliers appears to be well-
justified. We also found that 1000 bootstrap iterations are
sufficient in the present scenarios. Adapting arguments given
in Andersen et al. (1993) Section VII.2.3, covariates may be
included by means of appropriate wild bootstrap resampling
on the hazard scale as in a Cox model and subsequent trans-
formation according to the Hadamard derivative. This is in
contrast to, for instance, the resampling technique introduced
for competing risks by Cheng et al. (1998). Further, our tech-
nique may also be used to derive other statistical tests than
Kolmogorov–Smirnov-type tests, for instance, by adapting
arguments given in Dobler and Pauly (2014). Scheike and
Zhang (2003) also mentioned the present resampling idea as a
possible way of inference in direct regression modeling. These
are topics for further research.

The wild bootstrap enables a formal statistical framework
for comparing complex time-to-event outcome probabilities,
which are generally non-monotonic curves in time. In partic-
ular, the approach statistically confirms a positive treatment
effect of Grafalon in terms of the time under immunosup-
pressive therapy under a nonparametric Markov assumption,
but possibly requiring a slightly larger sample size. How-
ever, a sensitivity analysis with stricter nominal level α =
0.025 supports our findings (results not shown). The pro-
posed methodology has great potential in other fields of
medical research, whenever statistical inference for transi-
tion probabilities or functionals thereof is required. Current
examples include the clinical course of liver diseases (Jepsen
et al., 2015), joint replacements in orthopaedic patients
(Gillam et al., 2012), different stages of illicit drug use
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(Mayet et al., 2012), pregnancy outcome data (Di Termini
et al., 2012), investigations of longitudinal individual disabil-
ity and mortality (Willekens, 2014), and infection control
trials in healthcare epidemiology (e.g., Munoz-Price et al.,
2016; Sommer et al., 2018, and references therein).

8. Supplementary Materials

Web Appendices, Tables, and Figures as well as Example R

code referenced in Sections 3, 4, 5, and 6 are available with
this article at the Biometrics website on Wiley Online Library.
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