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Hirschengraben 84
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Statistik für zahlreiche Ratschläge und Hilfestellungen bei Problemen, insbesondere bei

Maja von Cube und Nadine Binder. Aber vor allem danke ich meinem Mann, Göran
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Summary

In clinical trials for the development of antibacterial drugs, diverse primary endpoints

have been used and treatment effects are usually assessed at the end of follow-up which

varies between studies. A highly patient-relevant statement would be an assessment

over the entire follow-up period with cure and death as co-primary endpoints. We em-

phasise to examine the time-dependent multistate endpoint “get cured and stay alive

over time”, since this might be most relevant from the patients’ perspective and can

capture different “cure patterns” over the treatment period. Such time-dynamic end-

points provide valuable additional information such that potentially hidden treatment

effects can be revealed that might be overlooked when only presenting incidence propor-

tions. Based on a “cure-death” multistate model, simple and sophisticated possibilities

are introduced and compared to evaluate a treatment difference in probabilities to be

cured and alive over time. As an example, non-inferiority is studied by means of one-

sided confidence bands provided by a flexible resampling technique, or, an innovative

regression method is used for a risk ratio of being cured and alive. These methods

are further evaluated via a simulation study and applied to three topical data exam-

ples, a randomised controlled trial for the treatment of patients with hospital-acquired

pneumonia, a randomised controlled trial for the prevention of recurrent Clostridium

difficile infection, and a cohort study to investigate the effect of inadequate treatment

for patients with ventilator-associated pneumonia due to the pathogen Pseudomonas

aeruginosa. Multistate methodology, already entrenched in applied infection control



literature for analysing observational data, is highly beneficial and easily applicable for

clinical trials as well to examine patient-relevant endpoints.
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1 INTRODUCTION

Antimicrobial resistance and hospital-acquired infections are growing worldwide prob-

lems, and, with few innovative drugs making it to the market there is an urgent need

for new drugs to treat such (resistant) infections [4, 5]. Severe bacterial diseases occur-

ring in hospitalised patients include, for example, hospital-acquired pneumonia (HAP),

particularly ventilator-associated pneumonia (VAP), which is associated with increased

morbidity, mortality, length of stay, and costs [6]. VAP occurs in around 9%− 27% of

patients receiving mechanical ventilation, making it the most common nosocomial infec-

tion among ventilated patients [7]. It accounts for about half of all antibiotics given in

the intensive-care unit (ICU) [8], and a high attributable mortality is estimated in a re-

cent prominent meta-analysis of individual patient data [9]. Thus, these severe bacterial

diseases put an immense burden on health care resources and novel antimicrobial agents

to treat them are urgently needed. The use of well-defined endpoints in randomised

controlled trials (RCTs) of novel antibiotic agents is vital to properly gauge their effec-

tiveness in treating severe hospital-acquired infections. Ideally, these endpoints should

be a direct measure of how patients feel, function, and survive [10, 11]. Unfortunately,

however, there is a lack of universal, widely accepted endpoints, particularly for severe

hospital-acquired infections [12].

1.1 Endpoints in clinical trials for antimicrobial drugs

Especially in severely ill patients, both cure and mortality endpoints have associated

challenges. All-cause mortality is the most robust endpoint; it is the most severe one

and can be measured objectively. RCTs traditionally reported ICU-, hospital-, or 28-

day-mortality, partly as a regulatory requirement, partly in an attempt to balance the



2 Chapter 1: INTRODUCTION

time needed for a drug to show its effects and the time in which other disease processes

could obscure this effect [12]. Also, mortality is often related to the underlying illnesses

and severity of disease [13].

In many trials, clinical or microbiological cure is used as efficacy endpoint in the

development of antimicrobial treatments [14]. While microbiological cure is defined as

eradication of the infection pathogen, a definition for clinical cure is difficult to find.

Clinical signs and symptoms may vary depending on the infectious process studied, but

also because of concurrent adverse events during the stay in the ICU [15]. Mostly, it

is defined as complete resolution of signs and symptoms of the infection or no further

antimicrobial treatment being needed [16].

In current and former clinical trials for the treatment of, e.g., HAP or VAP, a variety

of primary endpoints have been used [16, 17, 18, 19]. Even the existing guidelines are

not consistent in their recommendations. The European Medicines Agency (EMA)

proposes clinical cure, the clinical outcome measured at a fixed timepoint called the

“test-of-cure” (TOC) visit, as an acceptable primary endpoint [20]. In contrast, the

Food and Drug Administration (FDA) [21] suggests all-cause mortality evaluated at a

fixed timepoint at any time between day 14 and day 28 as the primary efficacy endpoint.

For Clostridium difficile infection, the most common infectious diarrhea, clinical cure

is recommended by the EMA [20] as primary endpoint. However, one major problem in

treating Clostridium difficile infection is the high recurrence rate, which is why many

clinical trials for new treatments of Clostridium difficile infection aim at preventing

a recurrent Clostridium difficile infection [22]. Also sustained cure (clinical cure and

no recurrent infection) is considered as a useful measure of treatment outcome when

comparing agents for which the initial clinical responses are similar [23].
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Multiple endpoints

However, often a single endpoint does not adequately capture the entire treatment effect

impacting patients in various aspects. The assessment of treatment effect on the basis of

multiple endpoints is challenging, both in terms of selecting an appropriate test statistic

and interpreting the results. Many strategies have been proposed in the literature to

handle multiple endpoints, e.g., [24, 25, 26, 27].

Röhmel et al. [27] discussed an application of two co-primary endpoints when it is

sufficient to show that one endpoint is superior and the other one non-inferior compared

to a control. Logan et al. [25] generalised the three-step procedure proposed by Röhmel

et al. within a closed testing formulation. Bloch et al. [26] developed a non-parametric

approach to multiple-endpoint testing based on a bootstrap procedure that can be used

to demonstrate non-inferiority of a new treatment for all endpoints and superiority for

some endpoints. Ramchandani et al. [24] proposed a test based on a simple scoring

system to summarise treatment effects across multiple endpoints.

For serious illnesses, it is strongly recommended that a composite endpoint should

include both mortality as well as a clinical endpoint [10, 28, 29]. However, construction

of such an endpoint is challenging and interpretation can be misleading especially when

the intervention appears to affect individual outcomes differently [30]. Thus, up to now,

most trials focus on cure or death as endpoints to be analysed separately, and there

are few examples in this field combining mortality with a clinical endpoint. Pocock et

al. [31] have suggested the win ratio as a new effect measure where pairs of patients

from the innovative and control treatment are grouped into winners and losers based on

whether the most / least favourable event was experienced first. The win ratio is then

calculated as the total number of winner pairs divided by the total number of loser pairs.

Evans et al. [32] recently proposed a similar design using superiority considerations

combined with the desirability of outcome ranking and a response adjusted for the
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duration of antibiotic risk. A composite score is designed, tailored to compare strategies

of antibiotic use by weighting its benefits and potential harms at an individual level.

The ranked ordinal clinical outcome is categorised into clinical benefit, clinical benefit

with some adverse events, survival without clinical benefit, survival without clinical

benefit but adverse events, and death.

1.2 The probability of being cured and alive (PCA)

In most clinical trials for novel antibiotics, measures of efficacy are the proportions of

patients in the respective treatment groups achieving microbiological or clinical cure.

As a measure of safety the proportions of death cases are taken into account [14], such

that treatment effects are assessed at the end of follow-up. We recommend combining

these two standard measures of clinical benefit by including both cure and death as co-

primary endpoint and analysing them as a time-to-event endpoint. Death cases have

to be treated as competing events to cure when cure is measured as a time-to-event

endpoint [33]. Also, death following shortly after cure should be considered since cure

then does not benefit the patient. Recently, Doshi pointed to a situation where patients

were considered cured but died on the same day [34]. We strongly suggest to examine

the time-dependent endpoint “get cured and stay alive over time”, since this might be

most relevant from the patients’ perspective and can capture different “cure patterns”

over the treatment period. The use of this time-to-event endpoint would incorporate

both the cure (and death) and the time at which it occurred and can increase power

to detect differences between the test and (active) control group. Furthermore, they

provide valuable additional information and potentially hidden treatment effects can

be revealed that might be overlooked when only presenting incidence proportions. As

also stated by Muscedere et al. [11], the use of a time-to-event endpoint combined with

mortality may be the best option, especially for HAP / VAP trials. To understand how
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the new treatment influences the whole etiological cure process, we utilise a multistate

“cure-death” model with states 0 as initial, 1 as cure and alive, and 2 as absorbing

death state [1, 2, 35]. The outcome of interest, to get cured and stay alive over time, is

given as the probability of being cured and alive (PCA) function and is estimated by

the Aalen-Johansen estimator [36] of the transition probability from state 0 to state 1

(in this case it equals the occupation probability for state 1). The latter generalises the

Kaplan-Meier [37] estimator to multistate settings. The proposed model accounts for

the time-dependency of cure and death, the presence of competing risks, and potential

censoring. In particular, it allows for the fact that patients might die, either before or

after cure.

Multistate models are appropriate to take into account the time-dependency of such

endpoints by modelling events as transitions between states. Well-established statistical

methodology is available to adequately analyse multistate data [38, 39, 40, 41, 35, 42],

and multistate methodology has already found its way into applied infection control lit-

erature for analysing observational data [43, 44, 45, 46, 47, 48, 49, 50]. So far, multistate

endpoints besides endpoints represented as estimands arising from a simple survival or

competing risks model were only rarely utilised in an RCT setting. In this work, we

show that multistate models are highly beneficial and easily applicable for clinical trials

as well to examine patient-relevant endpoints [12, 2, 3, 1].

In terms of studying the efficacy of cancer treatment trials, the aforementioned tran-

sition probability was first proposed by Temkin [51] as the probability of being in

response function (PBRF). The PBRF was then sometimes used as an outcome mea-

sure in the context of bone marrow transplant studies [52], when estimating current

leukaemia-free survival [53, 54], or for the estimation of being alive without relapse and

immunosuppression for graft-versus-host disease in a population of patients with acute
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lymphoblastic leukemia [55].

The purpose of such a function is to synthesise the different summary statistics

commonly used, the proportion who respond (here: cure) and the average duration

of response. This function rises with the occurrence of a response, falls with each

recurrence, and can distinguish between a treatment producing a high response rate

but generally short-lived responses and another treatment with a low response rate

but longer response durations. It provides a complete summary and an attractive

visual display of the given data [56]. Temkin demonstrated that the distribution of

the sojourn times of each transition could be estimated by a modified version of the

well-known Kaplan-Meier estimator that provide, when combined, an estimate of the

PBRF at each time of one possible event.

A further approach to estimate the PBRF was proposed by Pepe et al. [57, 58]

based on the difference between Kaplan-Meier estimators.

Cure models in oncology—Disambiguation

Since the term cure model is widely used in oncolocy, it is necessary to point out the

differences to the cure-death model we are dealing with in this thesis. Cure models

in oncology, where overall survival or progression-free survival are the major outcomes

of interest, were first proposed more than 50 years ago [59, 60, 61]. They are mostly

divided into the two classes of mixture and nonmixture models [62]. Mixture models,

e.g., model survival as a mixture of patients who are cured and those who are not cured

where the probability for cure is examined via logistic regression. A latent cure state

is incorporated for the proportion of patients that will never experience recurrence due

to cure to account for the fact that recurrence is known to influence survival [63, 64].

Recurrence is then considered as an auxiliary variable to enhance the efficiency of the

analysis of overall survival [65].
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1.3 Statistical methods for PCA

To show that a novel treatment performs better compared to placebo or an active

control, a statistical test is employed that is called superiority test. In a non-inferiority

test, the aim is to show that a test treatment is not (much) worse than an active control

treatment. In a two-sample parallel design, the problem of testing non-inferiority and

superiority can be unified by the following hypotheses

H0 : IA − IB ≤ δ versus H1 : IA − IB > δ,

where IA−IB is the difference between the true treatment-specific response proportions

of a test drug (IA) and a control drug (IB). The idea is that statistically significant

differences between the proportions may not be of interest unless the difference is greater

than a threshold. Consider IA− IB > 0 an indication of improvement and IA− IB < 0

an indication of worsening. Then, if the pre-specified margin δ < 0, the rejection of the

null-hypothesis indicates non-inferiority, if δ ≥ 0, superiority.

Non-inferiority concepts are more complex both in the design and analysis phase

and there are several challenges to address [66]. One of the most difficult issues is the

specification of the non-inferiority margin that determines the null hypothesis [67, 68]. A

variety of statistical methods can be used [66]. Generally, the margin should be based

on estimates of the effect of the active comparator out of previous studies or meta-

analyses where guidelines recommend the lower bound of the 95% confidence interval of

the treatment effect [69]. However, in the case of anti-infective agents, historical data

are not always available such that the margin has to be justified using an anticipated

benefit of the experimental drug [66]. The margin also depends on a specific proportion

of control failures at a landmark time. However, problems arise if these proportions

cannot be maintained at this pre-specified landmark time such that the non-inferiority

margin becomes questionable. As a solution, Fay and Follmann [70] propose a variable
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margin non-inferiority test that does not require any knowledge about the proportion

of control failures.

Another aspect worth mentioning is that patients with a treatment crossover may

bias an intention-to-treat analysis, which states that patients are analysed according to

the group they were randomised to regardless of the treatment they received, towards

a conclusion of non-inferiority [71]. But, a per-protocol analysis, where the analysis

set comprises only patients who fully comply with their assigned treatment, may be

biased as well when baseline characteristics are not balanced anymore. Mauri et al. [66]

recommend to analyse both data sets. Without a bias, this should lead to similar results,

but, nevertheless, careful consideration may be needed before drawing final conclusions.

Moreover, methods were already developed to deal with treatment switching [72].

Lastly, caution is advised with composite endpoints, especially if the respective

components are discordant regarding benefits and risks [73].

Why non-inferiority trials are indispensable in antibacterial drug develop-

ment

Superiority trials are the preferred design for drug development [74]. However, despite

aforementioned challenges, almost all antibacterial drugs that we rely on today were

based on non-inferiority trial designs [70, 75]. Actually, non-inferiority analyses are

indispensable in this medical field [74, 70, 76, 77]. The reasons are many and diverse.

Nowadays, the benefit of newly developed treatments in terms of efficacy is often

only marginal over existing treatments. They might be rather advantageous in reducing

costs via having fewer adverse effects, a better compliance, or a broader spectrum of

activity. Then, it is often not expected to be able to demonstrate superiority when an

active therapy exists that is effective and accepted by ethics committees and patients.

Furthermore, placebo trials are considered unethical for more serious infections with
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(b) Non-inferiority:
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Figure 1.1: Illustration of exemplary superiority and non-inferiority concepts for differ-

ent margins δ (in a, δ = 0, in b and c, δ = −0.075) and different assumptions for cure

proportions IA and IB. These values are further used for sample size calculations.

significant morbidity and mortality [66]. Moreover, in practice, at the time a treatment

is needed immediately, neither the type of pathogen nor the definite diagnosis of a

bacterial infection is known. Unfortunately, technologies to identify pathogens are far

from perfect [78]. As a consequence, only having an alternative treatment, a good

substitute, can be, under some circumstances, substantially beneficial for a patient
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[76]. Resistance to current drugs may develop fast and a long wait before starting the

development of a suitable drug could lead to large time gaps.

The main advantage of a non-inferiority trial is that a considerably smaller number

of patients is needed to achieve a pre-specified power in comparison to a superiority

trial for the same assumed true proportions. Only in this way it is possible to make

feasible studies of novel antibiotics, especially for the treatment of rare pathogens [74].

Let us examine this aspect in more detail. For each assumed true difference IA − IB

one can establish a sample size according to, e.g., [79, 80]. In a placebo-controlled

superiority trial, a clinically important difference is set up for the new treatment that

results, if large, in a relatively small required sample size. However, as mentioned above,

if a standard treatment exists, an active-controlled trial should be preferred for ethical

reasons [74]. Then, the concept of a clinically important difference is inappropriate

since any amount of improvement is clinically important.

For this, consider the following example: Assuming a cure rate of 85% for the test

drug and 80% for the control drug. Using a non-inferiority margin of δ = 7.5%, as can

be seen in Figure 1.1 b, a sample size of 290 patients, 145 in each arm, is sufficient to

prove non-inferiority for the endpoint cure using an asymptotic normally distributed

test statistic of proportions between two groups with 1 − β = 80% power and a level

of significance of α = 2.5%. Proving superiority with δ = 0, as can be seen in Figure

1.1 a, would require 1806 patients, 903 in each arm. Assuming equal cure rates in

a non-inferiority trial, as can be seen in Figure 1.1 c, would enlarge the sample size,

resulting, in this case, in 894 patients, 447 in each arm.

A white paper by the Infectious Diseases Society of America [29] provides examples

of ways superiority trials could be implemented if resistant pathogens were sufficiently

frequent. They mention, e.g., a hierarchical nested design proposed by Huque et al. [81].

In this design, the primary endpoint is first tested for non-inferiority in the subgroup
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of patients who have infections caused by pathogens susceptible to the control drug,

following by a superiority test for patients with infections caused by resistant pathogens

once non-inferiority is confirmed on the same endpoint. However, so far no RCT has

implemented a hierarchical nested design to determine treatment efficacy for infections

caused by multi-drug resistant organisms [12].

Assessing the difference of treatment-specific PCAs

Returning to the endpoint we focus on, being cured and alive over time, a much more

convincing statement than merely demonstrating non-inferiority or superiority at a

single point in time by, e.g., comparing proportions, is to demonstrate non-inferiority

or superiority over the entire follow-up period. From the patients’ perspective it is

highly relevant how the active treatment performs over the complete cure process, and

not only at the end of follow-up [33, 11]. The question that arises is how to compare

two probability curves of being cured and alive over time and how to simultaneously

perform non-inferiority or superiority analyses.

General tests for comparing probability curves

Generally, when considering the comparison of two probability curves, a statistical hy-

pothesis test that the two curves are the same has to be applied. One choice for such a

test would be to compare estimates of probability curves at a fixed time using the esti-

mated standard errors to construct a test statistic. This has the obvious disadvantage

of an arbitrary selection of a timepoint and, furthermore, is not a particularly powerful

test [82]. For the classic survival situation when no competing event is present and

no transition from cure to death is possible, generalised linear rank tests, such as the

well-known log-rank test [83], have become standard tools for comparing survival or

cumulative hazard functions using arguments based on sets of 2× 2 contingency tables.
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The log-rank test can also be seen as a special case of the general regression method

proposed by Cox [84]. A similar class of test statistics for making comparisons between

cumulative incidence functions was given by Gray [85] based on the Fine and Gray

model [86]. The first test to compare functions as the PBRF was proposed by Pepe

[57]. Hsieh et al. [87] proposed an interesting test technique based on log-rank tests for

inferences on treatment effects over a whole time frame and not only at one timepoint,

suitable for the cure-death model. A restricted version of the test technique is sensitive

to a prolonged time to death and duration of cure and a shorter time to cure of the

new treatment.

Pseudo-value regression

Pseudo-value regression was proposed by Andersen et al. [88] and Andersen and Klein

[89] and provides a simple and generalisable method of modelling complex time-to-

event data. It enables a direct regression model for general transition probabilities in a

multistate setting avoiding the Markov assumption. The idea is to obtain pseudo-values

from a jackknife statistic constructed from a consistent estimator of the probability of

interest that are further utilised as outcome variables in a generalised linear model. A

direct interpretation of covariate effects is possible, such that, with a treatment indicator

as covariate, a test of treatment difference can be performed on the probability of being

cured and alive. It results in a relative effect measure comparing two probabilities

to be cured and alive whose confidence interval can be used for non-inferiority and

superiority statements. Furthermore, in observational studies, when randomisation

cannot be employed, it is necessary to adjust for potential confounders, such as, e.g.,

the propensity score.
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Time-simultaneous confidence bands

RCTs often focus on the absolute difference as effect measure, e.g., with proportions of

cured patients or mortality cases [90]. To assess, e.g., time-simultaneous non-inferiority,

a so-called “confidence band” is then required, in which the absolute difference in prob-

abilities of being cured and alive for active treatment A minus control B over a relevant

time interval and not just at a single timepoint lies with a probability of, e.g., 95%.

Such a confidence band generalises the concept of a confidence interval to an entire

time interval of interest. We will construct these bands adopting a resampling proce-

dure known as“wild bootstrap”, which has been established for competing risks settings

[91, 92]. This technique can also be applied to other research fields as, e.g., machine

learning [93, 94]. Also, Liu et al. [53] adapt this approach to make inference for current

leukaemia-free survival curves in a more complex multistate model.

1.4 Scope of thesis

This dissertation is organised as follows: To begin, Section 2 outlines the mathematical

background. We will introduce basic statistical techniques in survival analysis, present

multistate models, and specify the cure-death model in a multistate framework. The

non-parametric estimators for estimands of interest are illustrated in Section 3. Based

on the cure-death model, we will focus on several possibilities for a treatment com-

parison in Section 4. Besides the simplest method, to compare risk differences with

proportions of patients cured and alive, time-simultaneous one-sided confidence bands,

pseudo-value regression, and a restricted log-rank-based test of treatment effect are

presented. These methods are further evaluated via a simulation study in Section 5

to examine how they handle simple and complex treatment imbalances. In Section 6

we will consider three data examples. Our major data example will be the recently
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published ceftobiprole trial [95], where the new regimen ceftobiprole is compared to the

two-drug regimen ceftazidime / linezolid for the treatment of patients with HAP and

VAP. The second example is based on our letter [3] we addressed to the recent article

by Wilcox et al. [96]. It is about hospitalised patients with Clostridium difficile infec-

tion, examining the safety and efficacy of actoxumab and bezlotoxumab. As a third

example, we will use a subset of the OUTCOMEREA research data base, a French mul-

ticenter study from the OUTCOMEREA research group, that includes data collected

in 23 ICUs. As this is an observational study, many other aspects as, e.g., analysis

methods using the propensity score, are examined. Here, we will compare adequate

and inadequate treatment for patients with VAP due to the pathogen Pseudomonas

aeruginosa. A discussion and conclusion in Section 7 finally summarises all findings of

this thesis and gives some leads for further research.
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2 MODEL SPECIFICATION

2.1 Mathematical background

Survival analysis, as one of the oldest fields in statistics, has a much broader meaning

today than merely analysing survival in the sense of death rates or mortality [97]. It is

about observing a group of individuals from some entry timepoint until a certain event

happens—an event of any kind as, e.g., blindness, graduation, employment, etc. It can

encompass the study of duration between any two events. These events can be good or

bad, such as recovery or relapse, marriage or divorce, which is worth mentioning since

the jargon of survival analysis suggests the events to be unpleasant. The basic example

is still a transition from an initial state, as alive, to an absorbing state, as death, in

Figure 2.1. Absorbing means that once entered this state, an individual cannot move

out anymore.

0 1

λ(t)

Initial Absorbing

Figure 2.1: Standard survival model with hazard function λ(t).



16 Chapter 2: MODEL SPECIFICATION

Hazards, survival function, and Cox regression

Let T denote a non-negative random variable which models the failure or survival time

of individuals of a population, with distribution function F and density function f . One

of the important objects of interest is the survival function

S(t) := Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t) =

∫ ∞
t

f(u)du, (1)

the probability for the occurrence of a special event at time T after a certain time t of

an arbitrarily selected individual out of the population and its distribution, which has

to be estimated and compared between different groups. S is generally estimated by

the Kaplan-Meier estimator [37], a special case of the Aalen-Johansen estimator [98]

introduced in Section 3.1. Another important issue is to model the hazard function

which is the threshold value of the probability that an individual will experience an

event within a small time interval given that it has survived up to the beginning of that

interval. It can also be interpreted as the risk of dying at time t or the momentary force

of mortality. For a continuous survival time T the hazard function λ is defined as

λ(t) := lim
∆t→0

Pr(t ≤ T < t+ ∆t | T ≥ t)

∆t
. (2)

A short and more intuitive notation of (2) is

λ(t) · dt := Pr(T ∈ dt | T ≥ t), (3)

where we can write dt for the length of the infinitesimal small time interval [t, t + ∆t)

and the interval itself [41]. While S is monotonically decreasing with S(0) = 1 and

limt→∞ S(t) = 0, λ can be any non-negative function. The cumulative hazard Λ is

defined as

Λ(t) :=

∫ t

0

λ(u)du (4)
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and is estimated by the Nelson-Aalen estimator [99, 100], introduced in Section 3.1.

The survival function in (1) can be expressed in terms of the hazard function as

S(t) = exp

(
−
∫ t

0

λ(u)du

)
= exp (−Λ(t)) (5)

since

λ(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t | T ≥ t)

∆t

= lim
∆t→0

Pr(t ≤ T < t+ ∆t)

∆t

1

Pr(T ≥ t)

= lim
∆t→0

Pr(T < t+ ∆t)− Pr(T < t)

∆t

1

Pr(T ≥ t)

= lim
∆t→0

F (t+ ∆t)− F (t)

∆t

1

Pr(T > t)

=
F ′(t)

S(t)
=
−S ′(t)
S(t)

= − d

dt
logS(t).

The most interesting survival model examines the relationship between survival and one

or more predictors, usually termed covariates or explanatory variables. One famous

regression method introduced is the Cox proportional hazards regression [84]. The

hazard rate for a subject i with covariate vector Zi = (Zi1, . . . , Zip) is described as

λ(t | Zi) = λ0(t) exp(β′Zi), (6)

with non-negative baseline hazard function λ0(t) and linear predictor β′Zi =
∑

r βrZir,

r ∈ {1, . . . , p}. Hazard rates for all subjects are assumed to be proportional. The hazard

ratio (HR) exp(βr) is associated with an increase of one unit for the rth covariate Zr.

To compare the survival distributions of two samples, the log-rank test can be used.

This standard non-parametric statistical hypothesis test was first proposed by Nathan

Mantel [83] and was named the log-rank test by Richard and Julian Peto [101]. The

log-rank test is equivalent to the partial likelihood score test for the Cox proportional

hazards regression model [102].
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Cause-specific hazard, cumulative incidence function, and Fine and Gray

regression

If a time-to-event endpoint is analysed that is not all-encompassing, competing risks

have to be considered to include multiple endpoints. The competing risks scenario, as

can be seen in Figure 2.2, includes a set S = {1, 2, . . . , J} of states that can be reached

out of state 0. The cause-specific hazard rate

λ0j(t) := lim
∆t→0

Pr(t < T ≤ t+ ∆t; cause j | T > t)

∆t
, j ∈ S

models the transition intensity or instantaneous risk per time unit of going from state

0 to state j. It is the probability that an individual in the initial state just prior to

time t will pass to state 1 or 2, respectively, in the small time interval [t, t + ∆t). The

probability

P00(0, t) = S(t) = exp

(
−
∫ t

0

J∑
j=1

λ0j(u)du

)
(7)

0

1

2

λ01(t)

λ02(t)

Initial

Event of interest

Competing event

Figure 2.2: Competing risks model with cause-specific hazards λ01(t) and λ02(t). This

restriction to two competing events is only for ease of presentation. For studying the

cumulative probability of the event of interest (state 1), all other competing events are

combined into state 2.
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of staying in state 0 includes all event-specific hazards. It can be seen that (7) is of

the same form than (5), the survival probability in the simple survival setting. The

cumulative incidence function (CIF)

P0j(0, t) :=

∫ t

0

P00(0, u)λ0j(u)du, (8)

the probability of a transition from state 0 to state j, in the presence of all the competing

risks, therefore depends on every cause-specific hazard. It is estimated by the Aalen-

Johansen estimator [98], introduced in Section 3.1.

In a simple survival setting, the probability of an event can be estimated as 1 minus the

Kaplan-Meier estimator, so there is a simple relationship between the hazard rate and

the survival function as can be seen in (5). In a competing risks setting, this relation

does not hold. Here, Fine and Gray [86] suggested a Cox-type model for the so-called

subdistribution hazard. While in a competing risks setting the cause-specific hazard

function is the instantaneous rate of occurence of the given type of event in subjects

who are currently event-free, the subdistribution hazard function considers subjects

who have not yet experienced an event of that type (such that both subjects who

are event-free as well as subjects who experienced a competing event are considered)

[103]. One can show that 1 minus the Kaplan-Meier estimator where as hazard the

subdistribution hazard is inserted equals the Aalen-Johansen estimator of the CIF, so

the subdistribution hazard gives a one-to-one correspondence between hazard and CIF

[104]. Hence, the score test from fitting the Fine and Gray model can be used to

compare the CIFs of two samples directly [105]. This test is due to Gray and therefore

often called Gray’s test [85]. Since the subdistribution hazard ratio (SHR) describes

the relative effect of covariates on the subdistribution hazard function, covariates in the

Fine and Gray model can also be interpreted as having an effect on the CIF [103].
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2.2 Multistate models

The quantities introduced in previous chapters can also be expressed in terms of mul-

tistate models [36, 41]. In general, multistate models make an interpretation of more

complex endpoints of interest more accessible than a hazard-based analysis alone. The

multistate framework models events as transitions between states, thus, the simplest

multistate model is a transition from an initial state to an absorbing state as in Figure

2.1. In general, let us consider a Markov process (X(t), t ∈ [0,∞)) with a finite state

space S = {1, 2, . . . , J} and a (J + 1)× (J + 1) transition matrix

P(s, t) := (Plj(s, t))l,j∈S

with entries

Plj(s, t) := Pr(X(t) = j | X(s) = l), s ≤ t and l, j ∈ S.

The survival function is therefore S(t) = P00(X(t) = 0), where Pr(X(0) = 0) = 1. The

matrix of cumulative hazards

Λ(t) := (Λlj(t))l,j∈S

has entries

Λlj(s, t) :=

∫ t

0

λlj(u)du, l, j ∈ S

with transition hazards

λlj(t) · dt := Pr(X(t+ ∆t)− = j | X(t−) = l), l, j ∈ S and l 6= j.

We typically assume (X(t), t ∈ [0,∞)) to be Markov, a key assumption for estimation

techniques in Section 3, which means that

Pr(X(t) = j | X(s) = l,Past) = Pr(X(t) = j | X(s) = l), s ≤ t and l, j ∈ S,

(9)
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that is, the transition probabilities only depend on the past via the current time s and

the currently occupied state [41]. “Past” is written for knowledge about the process’

history up to time s consisting of the observation of the process in the interval [0, s],

also known als σ-algebra. As time increases, this makes up an increasing sequence

of σ-algebras, a so-called filtration. The process is time-inhomogeneous, that means

that the transition hazards do depend on time interval [s, t]. A homogeneous process

assumes that these probabilities are identical regardless the length t− s of the interval.

It follows that a homogeneous Markov model is a parametric model with constant

transition hazards, whereas in an inhomogeneous Markov model the transition hazard

can be any integrable non-negative function [41].

Only for simple Markov processes it is possible to give explicit expressions for the

transition probabilities in terms of transition hazards. The product integral

P(s, t) = P
u∈(s,t]

(I + dΛ(u)) (10)

= lim
∆Λ(tk)→0

K∏
k=1

(I + ∆Λ(tk)) (11)

= lim
∆Λ(tk)→0

[(I + Λ(tK)−Λ(tK−1)) · · · (I + Λ(t1)−Λ(t0))]

has to be used to express the transition probability matrix P(s, t) in terms of the matrix

of transition intensities Λ(t) for ever finer partitions s = t0 < t1 < . . . < tK−1 < tK = t

[98, 106]. The product integral P is defined as the limit of approximating finite products

b

P
a

(1 + f(x)dx) = lim
∆x→0

∏
(1 + f(xi)∆x)

in a similar manner as the integral
∫

is defined as limit of approximating sums∫ b

a

f(x)dx = lim
∆x→0

∑
f(xi)∆x.
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2.3 The cure-death model

In order to suitably account for the time-dynamic pattern of cure and death after

randomisation, we focus on the “illness-death model without recovery” embedded in the

flexible and powerful multistate model framework [104, 42]. Since the context here is

hospital acquired infection, we call this model “cure-death model” [1], see Figure 2.3.

This is a Markov process (X(t), t ∈ [0,∞)) with state space S = {0, 1, 2}, with 0 as

initial, 1 as cure, and 2 as absorbing death state. According to the study protocol,

all patients are in the initial state 0 at the start of follow-up, that is randomisation to

treatment, immediately after infection, such that Pr(X(0) = 0) = 1. The timescale of

interest is “time since randomisation” in days. The outcome most relevant for patients

is “being cured and alive” (state 1), however, all patients, whether cured or not, are

permanently at risk for death (state 2) during the entire follow-up.

0

1

2

λ01(t)

λ02(t)

λ12(t)Randomisation

Cure

Death

Figure 2.3: The cure-death model for comparing two antimicrobial therapies with an

initial infection / randomisation state, a cure state, and a death state. The direction of

arrows illustrates the potential transition between the states determined by a transition

hazard λ01(t), λ02(t), or λ12(t).
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The arrows in Figure 2.3 illustrate the possible transitions within our multistate model

determined by transition hazards. They can be interpreted as momentary forces that

pull a subject out of one state to another. Here, the matrix of transition probabilities

is defined as

P(s, t) := (Plj(s, t))l,j, l, j ∈ S

with transition probabilities

Plj(s, t) := Pr(X(t) = j|X(s) = l), s ≤ t,

where entry (0,0) is

P00(0, t) = Pr(X(t) = 0 | X(0) = 0)

= exp

(
−
∫ t

0

λ01(u) + λ02(u)du

)
,

entry (0,1) is

P01(0, t) = Pr(X(t) = 1 | X(0) = 0) (12)

=

∫ t

0

P00(0, u)λ01(u)P11(u, t)du,

entry (0,2) is

P02(0, t) = Pr(X(t) = 2 | X(0) = 0)

= 1− (P00(0, t) + P01(0, t)),

entry (1,1) is

P11(s, t) = Pr(X(t) = 1 | X(s) = 1)

= exp

(
−
∫ t

s

λ12(v)dv

)
,
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and entry (1,2) is

P12(s, t) = Pr(X(t) = 2 | X(s) = 1)

= 1− P11(s, t).

Entries (1,0), that is P10(0, t) = Pr(X(t) = 0 | X(0) = 1), (2,0), that is P20(0, t) =

Pr(X(t) = 0 | X(0) = 2), and (2,1), that is P21(0, t) = Pr(X(t) = 1 | X(0) = 2), are

zero and (2,2), that is P22(0, t) = Pr(X(t) = 2 | X(0) = 2) is one. Our interest focuses

on the probability to be cured and alive in equation (12), the expected proportion of

patients cured and alive, that is P01(0, t). The first two terms in the integrand are

the same for the cumulative incidence function. The difference is now that state 1 is

not absorbing as in the competing risks case, but an intermediate state. Therefore,

we model a 1 → 2 transition as well by including P11(u, t) to ensure that individuals

stay in state 1 until time t after a 01 transition at time u. Note that P01(s, t) is the

same as the state occupation probability Pr(X(t) = 1) since the initial distribution is

degenerate in state 0, that is Pr(X(0) = 0) = 1.

The Markov assumption

As before, we assume that our multistate model is time-inhomogeneous Markov, see

equation (9), which means that the future course of a cured patient through the mul-

tistate model in Figure 2.3 depends on the time since randomisation and the fact that

the patient is cured, but not on the time the patient has already been cured. Formally,

it is

P12(s, t) = Pr(X(t) = 2 | X(s) = 1,Past) = Pr(X(t) = 2 | X(s) = 1),

that means the past and the future of the process are independent given the present

time s [41]. Further, λ12(t) depends on the transition type and on the current time t
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but not on the entry time into the cure state t̃. In a non-Markov model, this transition

hazard would be λ12(t̃, t) and may be different for individual times t̃. Such a restriction

is not necessary in the competing risks situation in Figure 2.2 since there is, except the

initial state, no transient state.

To check if the Markov assumption is fulfilled, we may study the influence of the

time to cure, the 0 → 1 transition, on the 1 → 2 mortality transition including it as a

time-dependent variable in a Cox model for the 12 hazard [41]. Alternatively, in this

model, another estimator for the PCA function not relying on the Markov assumption

can be used [57, 107]. It is based on a decomposition of the probability of interest,

P01(0, t), into components that can be estimated by Kaplan-Meier-type estimators, re-

spectively. More information about this alternative can be found in Section 3.2. The

idea is to compare the estimate derived by the Aalen-Johansen estimator [36], that

relies on the Markov assumption, to the estimate constructed without the necessity

of the Markov assumption. A non-existent discrepancy may indicate that the Markov

assumption is fulfilled or not indispensable.

A hazard-based analysis applying, for instance, the well-known Cox proportional haz-

ards model, does not allow direct statements regarding the probability of interest, be-

cause the latter is a complex functional of all involved hazards. Instead, the Aalen-

Johansen estimator [36], introduced in Section 3.1 and 3.2, is employed for non-parametric

estimation of this transition probability, which generalises the well-known Kaplan-Meier

estimator to general multistate settings. An alternative method for regression analyses,

pseudo-value regression, is introduced in Section 4.3.
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2.4 Motivation for estimation and simulation techniques

Each transition hazard λlj in a multistate model can be interpreted as an instantaneous

risk per time unit to go from state l to state j. By assuming the hazard rates to be

constant over time, they can be estimated as

λ̂lj =
# patients with an lj transition

# patient-days at risk in state l
.

In a simple competing risks setting out of Figure 2.2 with state space S = {0, 1, 2},

e.g., the estimated overall risk of going from state 0 to state 1 at the end of follow-up

τ is related to the cause-specific rate as follows

P̂01(0, τ) =
λ̂01

λ̂01 + λ̂02

and for the 02 transition

P̂02(0, τ) =
λ̂02

λ̂01 + λ̂02

.

This is due to the fact that the CIF out of equation (8) can be expressed as

P01(0, t) =

∫ t

0

P00(0, u)λ01(u)du

=

∫ t

0

exp

(
−
∫ u

0

(λ01(v) + λ02(v))dv

)
λ01(u)du

= λ01

∫ t

0

exp (−(λ01 + λ02)u) du

= λ01

[
− 1

λ01 + λ02

exp (−(λ01 + λ02)u)

]t
0

=
λ01

λ01 + λ02

(1− exp(−(λ01 + λ02)t))

when assuming constant hazards, and

P02(0, t) =
λ02

λ01 + λ02

(1− exp(−(λ01 + λ02)t)).
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Cure-death model

In a cure-death model out of Figure 2.3, the probabilities for constant hazards are of

the following form:

P01(0, t) =

∫ t

0

P00(0, u)λ01(u)P11(u, t)du

=

∫ t

0

exp

(
−
∫ u

0

(λ01(v) + λ02(v))dv

)
λ01(u) exp

(
−
∫ t

u

λ12(v)dv

)
du

= λ01

∫ t

0

exp (−(λ01 + λ02)u− λ12(t− u)) du

= λ01

[
− 1

−(λ01 + λ02 − λ12)
exp (−(λ01 + λ02 − λ12)u− λ12t)

]t
0

=
λ01

λ01 + λ02 − λ12

(− exp(−(λ01 + λ02)t) + exp(−λ12t)),

P02(0, t) = 1− (P00(0, t) + P01(0, t))

= 1−
(

exp(−(λ01 + λ02)t) +
λ01

λ01 + λ02 − λ12

(− exp(−(λ01 + λ02)t) + exp(−λ12t))

)
,

and

P12(u, t) = 1− P11(s, t)

= 1− exp(−λ12(t− u)).

Extended cure-death models

The cure-death model can easily be extended and aforementioned considerations about

the shape of transition probabilities in the constant hazard case are applicable to fit to

a specific data situation or a particular clinical question [39], as Figure 6.1 in Section

6.1, Figure 6.6 in Section 6.2, or Figure 6.9 in Section 6.3.
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Since multistate models are realised as a nested sequence of competing risks experiments

that are regulated by the transition hazards [41], such basic estimation techniques also

work in an extended version in more complex multistate situations. How estimation is

done in detail is discussed in the following section. Furthermore, with the help of the

connection between risk and rate, it is possible to reconstruct transition hazards and

simulate respective data even if only summary data are given in a publication. This is

done in Section 6.2.2.
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3 NON-PARAMETRIC ESTIMATION

In this chapter, we will introduce the well-known Nelson-Aalen and Aalen-Johansen

estimator, as often applied non-parametric estimators for estimands introduced the

chapter before.

The data on which survival and multistate models are fit are often censored, a problem

that does not generally arise with other types of data. It means that the event of interest

may not necessarily happen in the time window of observation for all individuals and

thus, these times are called right-censored. A typical example is an RCT in which time

zero corresponds to treatment randomisation. Patients experiencing no event before

the administrative closing of the trial will be right-censored.

So, let C denote the end of follow-up, such that instead of event time T we observe

only the censored event time T = min(T,C). Because T and C are independent,

censoring does not disturb the hazard and

λ(t) · dt = Pr(T ∈ dt | T ≥ t) = Pr(T ∈ dt, T ≤ C | min(T,C) ≥ t). (13)

Consequently, the cumulative cause-specific hazard can be estimated also from censored

data that leads us to the Nelson-Aalen estimator. We will show in the following, Section

3.1, that the Kaplan-Meier estimator for the survival function and the Aalen-Johansen

estimator for an arbitrary transition probability can be expressed in terms of the Nelson-

Aalen estimator. We will introduce these estimators using counting process formulation.

Another important issue is that there are situations where individuals enter the

study at a time later than time origin 0. Such delayed entry times are said to be

left-truncated. Neither of them will disturb the concept of hazards.
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3.1 Nelson-Aalen and Aalen-Johansen estimator

A non-parametric estimator of the cumulative hazard in (4) is given by the Nelson-Aalen

estimator proposed by Nelson [99, 100], by Altshuler [108], and Aalen [109].

We assume that there are n individuals under study, i ∈ {1, . . . , n}, with data arising

from n independent replicates of a multistate process with state space S as in Section

2.2, respectively subject to a right-censoring time Ci. Let Yl,i(t) = 1 if patient i is in

state l before time t, so the at-risk process

Yl(t) :=
n∑
i=1

Yl,i(t), l ∈ S

counts the number of patients at risk just prior to time t. Let Nlj,i(t) = 1 if individual

i moves directly from state l to state j until time t, so the counting process

Nlj(t) :=
n∑
i=1

Nlj,i(t), l, j ∈ S and l 6= j

counts the number of lj transitions in time interval [0, t]. We will write

dNlj(t) := Nlj(t)−Nlj(t−)

for the increments of Nlj(t), the number of lj transitions observed exactly at time t. We

have seen in (2.2) that λlj(t)dt is an infinitesimal conditional transition probability. If

no transition is observed at time t, dNlj(t) equals zero and, consequently, the estimate

of λlj(t)dt as well. If we do observe lj transitions at time t, dNlj(t) is greater than zero

and we can estimate λlj(t)dt as the number of transition divided by the number at risk

just prior to t, that is Yl(t). The Nelson-Aalen estimate Λ̂(t) of the cumulative hazard

matrix Λ(t) = (Λlj)l,j∈S has entries that sum up these increments

Λ̂lj(t) :=
∑
s≤t

dNlj(s)

Yl(s)
.
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An estimator of the variance of Λ̂lj(t) is given by

V̂lj(t) :=
∑
s≤t

dNlj(s)

Y 2
l (s)

that can be used to construct pointwise confidence intervals.

The estimation of transition probabilities is more complicated since, in general, they are

a complex function of transition hazards and the state occupied at time t may result

from a nested sequence of competing risks experiments [41]. In (2.2) we have seen

that P (s, t) can be approximated based on partitions of the interval [s, t]. Partitioning

further approaches a limit as in (11) that can be expressed by product integration.

Consequently, the Aalen-Johansen estimator, independently established by Aalen and

Johansen [98] and Fleming [110, 111], is a finite matrix product

P̂(s, t) := P
u∈(s,t]

(I + dΛ̂(u)), (14)

as in (10) where the Nelson-Aalen estimate is plugged in. Thus, the Kaplan-Meier

estimator of the survival function is a special version of the Aalen-Johansen estimator

Ŝ(t) = P̂01(0, t) = P
u∈(0,t]

(1 + dΛ̂01(u)), (15)

when there are only two states as in Figure 2.1.

For estimation of the covariance for the Aalen-Johansen estimator, a Greenwood-type

variance estimator is available, but, unfortunately, with a complicated structure (Equa-

tion 4.4.17 in [112]). For facilitation, Andersen et al. develop a recursion formula for

such an estimator as well (Equation 4.4.19 in [112]). Generally, the Greenwood-type

variance estimator is preferred in the setting having competing risks data with left-

truncation [113]. This can again be used to construct pointwise confidence intervals.
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3.2 Non-parametric estimation of the PCA function

An estimator of the PCA function

P01(0, t) =

∫ t

0

P00(0, u)λ01(u)P11(u, t)du,

in model out of Figure 2.3 as in equation (12), is given by the Aalen-Johansen estimator

that was introduced in Section 3.1. P00(0, u) and P11(u, t) are estimated by Kaplan-

Meier-type estimators P̂00(0, u) and P̂11(u, t), λ01(u)du by the increment of the Nelson-

Aalen estimator dΛ̂01(u) for the cumulative cure hazard Λ01(u) =
∫ t

0
λ01(u)du, such

that

P̂01(0, t) =
∑

0<u≤t

P̂00(0, u−)
dN01(u)

Y0(u)
P̂11(u, t),

with

P̂00(0, u) =
∏
s≤u

(
1− d(N01(s) +N02(s))

Y0(s)

)
and

P̂11(u, t) =
∏
s<u≤t

(
1− dN12(u)

Y1(u)

)
.

Note that in the absence of right-censoring, the Aalen-Johansen estimator is identical

to the relative proportion of patients being in state 1 of Figure (2.3) at time t.

Alternative estimator not relying on the Markov assumption

As discussed in Pepe [57], an alternative estimator for the PCA function not relying on

the Markov assumption can be used, originally proposed by Tsai et al. [107, 114]. As

the equation

P00(0, t) + P01(0, t) + P02(0, t) = 1

holds, P01(0, t) can be expressed as

P01(0, t) = 1− P00(0, t)− P02(0, t),
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where P00(0, t) can be estimated as the Kaplan-Meier estimator for the first event and

P02(0, t) as 1 minus the Kaplan-Meier estimator for death. With the condition that

censoring is independent of the state, the alternative non-parametric estimator for the

PCA function is then given by

P̂01(0, t) = 1−
∏
u≤t

(
1− d(N01(u) +N02(u))

Y0(u)

)
−

(
1−

∏
u≤t

(
1− d(N02(u) +N12(u))

Y0(u) + Y1(u)

))

=
∏
u≤t

(
1− d(N02(u) +N12(u))

Y0(u) + Y1(u)

)
−
∏
u≤t

(
1− d(N01(u) +N02(u))

Y0(u)

)
.

In Figure 6.1 out of Section 6.1, P01(0, t) can be expressed as

P01(0, t) = 1− P00(0, t)− P02(0, t)− P03(0, t).

Again, P00(0, t) can be estimated as the Kaplan-Meier estimator for the first event and

P02(0, t) as 1 minus the Kaplan-Meier estimator for death. However, P03(0, t) can not

be estimated as as 1 minus the Kaplan-Meier estimator due to the presence of the

competing event “death”. An option is to combine state 2 and 3 for the alternative

estimator as this does not affect the examination of P01(0, t), such that

P̂01(0, t) =
∏
u≤t

(
1− d(N02(u) +N03(u) +N12(u))

Y0(u) + Y1(u)

)
−
∏
u≤t

(
1− d(N01(u) +N02(u))

Y0(u)

)
.

In Figure 6.6 out of Section 6.2, P01(0, t) can be expressed as

P01(0, t) = 1− P00(0, t)− P02(0, t)− P03(0, t)− P04(0, t).

As above, P00(0, t) can be estimated as the Kaplan-Meier estimator for the first event.

However, P02(0, t), a competing event transition before potential cure, can not be es-

timated as 1 minus the Kaplan-Meier estimator due to the presence of the competing

event “cure”, the same applies to P03(0, t) and P04(0, t). Again, an option is to combine
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state 2, 3, and 4 for the alternative estimator as this does not affect the examination of

P01(0, t), such that

P̂01(0, t) =
∏
u≤t

(
1− d(N02(u) +N13(u) +N14(u))

Y0(u) + Y1(u)

)
−
∏
u≤t

(
1− d(N01(u) +N02(u))

Y0(u)

)
.

If the original data of the MODIFY I and II trial [96] were available, this method could

be used to check if the Markov assumption is appropriate. In Figure 6.9 out of Section

6.3, the estimand of interest is the combination of P01(0, t) + P03(0, t), the probability

of being extubated alive (but still in hospital) plus the probability of being discharged

from hospital. P01(0, t) can be expressed as

P01(0, t) = 1− P00(0, t)− P02(0, t)− P03(0, t).

For estimation, we may combine state 2 and 3, such that

P̂01(0, t) =
∏
u≤t

(
1− d(N02(u) +N12(u) +N13(u))

Y0(u) + Y1(u)

)
−
∏
u≤t

(
1− d(N01(u) +N02(u))

Y0(u)

)
.

P03(0, t) can be expressed as

P03(0, t) = 1− P00(0, t)− P02(0, t)− P01(0, t).

Because information about the 3 → 2 transition is incomplete (incomplete mortality

follow-up for death after discharge), it is not possible to apply the “trick” as before.

Here, a 13 transition constitutes a competing event for the 1→ 2 transition. Since only

a component of our quantity of interest is estimable using the alternative method, we

will check if the Markov assumption is fulfilled by studying the influence of the time to

cure, the 0 → 1 transition, on the 1 → 2 reintubation or mortality transition and on

the 13 discharge transition by including it as a time-dependent variable in a Cox model

for the 12 and 13 hazard, respectively. If a complete mortality follow-up was available,

such an alternative analysis may be repeated.
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4 TREATMENT COMPARISON

When focusing on clinical cure as primary endpoint for comparison of an active treat-

ment A to a control B, the traditional procedure is to estimate risk (incidence) dif-

ferences with corresponding confidence intervals using treatment-specific incidence pro-

portions of cured patients given by

ÎA − ÎB =
# cured with treatment A

nA
− # cured with treatment B

nB
(16)

at a pre-specified timepoint, say τ , mostly end of follow-up, to demonstrate non-

inferiority or superiority. We will write # for the number of patients with a specific

characteristic. nA and nB correspond to the treatment specific number of patients. In

a complete data situation without censoring, these quotients are the correct estimators

for the treatment-specific cumulative incidence functions of being cured at τ and the

difference in (16) should coincide with the difference

ĈIF
A

01(τ)− ĈIF
B

01(τ).

In HAP and VAP trials, often non-inferiority analyses are applied [20], as can be seen

in, e.g., Awad et al. [95]. For this, it is examined if the lower bound of confidence

interval

ÎA − ÎB ± z1−α
2

√√√√ ÎA

(
1− ÎA

)
nA

+
ÎB

(
1− ÎB

)
nB

(17)

exceeds a protocol-defined non-inferiority margin. Here, z1−α
2

is the 1− α
2

quantile of the

standard normal distribution, for α = 5% it is 1.96. Alternative methods to construct

the confidence interval are discussed in Altman et al. [115].

The cure-death model in Figure 2.3 provides an analysis strategy that includes two
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co-primary endpoints simultaneously. The timing of the events cure and death as well

as their chronological sequence are modelled with an initial state 0 (randomisation), a

cure state 1, and a death state 2. Based on this model, we will focus on the following

possibilities for a treatment comparison:

1. Risk differences with proportions of patients cured and alive (focus on a pre-

specified timepoint only),

2. Time-simultaneous one-sided confidence bands (extension of point 1 to a time

interval of interest),

3. Pseudo-value regression techniques (time-simultaneous examination allowing for

additional covariate adjustment), and

4. Restricted log-rank-based test of treatment effect (alternative approach based on

the well-known log-rank test).

We will discuss advantages and disadvantages of the proposed procedures in showing

non-inferiority or superiority.
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4.1 Risk differences cured and alive

A simple procedure to examine both cure and death is to use risk differences with

incidence proportions of patients cured and alive given by

# cured and alive with treatment A

nA
− # cured and alive with treatment B

nB
(18)

that is tantamount with the treatment-specific proportions of patients in state 1 of

model 2.3 at time τ . In a complete data situation without censoring, these quotients

are the correct estimators for the treatment-specific probabilities to be cured and alive

at τ and the difference is given by

P̂A
01(τ)− P̂B

01(τ).

The confidence interval for (18) is calculated analogous to (17) that enables statements

concerning non-inferiority and superiority. Also, a chi-squared test for equality of pro-

portions can be applied.

However, we can make inferences about one timepoint only and, consequently, the re-

sult strongly depends on this selected timepoint. By not considering the time-dynamic

process, lots of information that may be highly relevant from the patients’ perspective

can get lost. A time-simultaneous solution is provided in Section 4.2.
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4.2 Time-simultaneous confidence bands

A much more convincing statement than merely demonstrating non-inferiority or su-

periority at a single point in time is to consider the entire follow-up period. From

the patients’ perspective it is a highly relevant information how the active treatment

performs over the complete cure process [33, 11]. To assess, e.g., time-simultaneous

non-inferiority, a so-called “confidence band” is required, in which the difference in

probabilities of being cured and alive for active treatment A minus control B,

PA
01(0, t)− PB

01(0, t),

over a relevant time interval, e.g. [0, τ ], and not just at a single timepoint lies with, e.g.,

a probability of 95%. Such a confidence band generalises the concept of a confidence

interval to an entire time interval of interest. Adapting the principles of confidence

interval inclusion as discussed in [116] to time-simultaneous confidence bands, treatment

A can be deemed non-inferior to B if the confidence band for the difference of the

treatment-specific probability curves,

P̂A
01(0, t)− P̂B

01(0, t)− qα,

lies above the protocol-defined non-inferiority margin over the whole time period con-

sidered [2]. The statement for superiority analyses works analogously while using a

reference value of zero.

We will construct qα adopting a resampling procedure known as “wild bootstrap”,

originally proposed by Wu [117], that has first been applied in regression analyses when

there are heteroskedastic errors. Nonparametric analysis of transition probabilities in

multistate models based on asymptotic theory is challenging due to the complicated

structure of the limiting covariance process. In a simple competing risks setting, Lin

[91] proposes to work with a martingale representation for the limit process of the
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Aalen-Johansen estimator of the cumulative incidence function minus the true quan-

tity. This technique keeps the data fixed while martingales are substituted by multi-

pliers that involve simulated normal variates. Lin also proposes a confidence band and

a Kolmogorov-Smirnov type test for comparing cumulative incidence functions. Bey-

ersmann et al. [92] provide a general conditional central limit theorem for the wild

bootstrap in Lin’s approach and also show that other multipliers, as e.g., centred Pois-

sons, may lead to better finite sample performance. Bluhmki et al. [118] extend Lin’s

resampling technique to general multistate situations where the aim is to estimate the

matrix of transition probabilities. The latter work is applied here.

To construct qα, let us first define the difference

D(0, t) := k(t)
[(
P̂A

01(0, t)− PA
01(0, t)

)
−
(
P̂B

01(0, t)− PB
01(0, t)

)]
,

with positive weight function k. Different weight functions result into different types

of confidence bands. Following Lin [91], we can choose k(t) = I ∀t ∈ [0, τ ], resulting

into linear confidence bands where the width does not depend on time t.

Many other ways to construct such a confidence band are conceivable, e.g., depend-

ing on the precision of the respective estimate or, as examined in Hieke et al. [119] for

the ordinary competing risks setting, using weights according to the standard log-rank

test, that is k(t) = YA(t)YB(t)
YA(t)+YB(t)

∀t ∈ [0, τ ], where YA and YB are the risk processes for

treatment group A and B. Here, for each day the weight is the product of the risk sets

in each group divided by the sum of these risk sets. The uncertainty of the estimated

transition probability does depend on time and so does the uncertainty of the difference.

The confidence band with weight function as in the log-rank test or depending on the

estimate precision might appear as a reasonable choice since it gets wider with decreas-

ing risk sets or decreasing precision, respectively. However, we choose a confidence band

with equal width over time due to several reasons: A confidence band that gets wider
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over time would never allow to reject the null hypothesis of non-inferiority even if an

innovative treatment would be substantially better than an alternative. A possibility is

to restrict to a more narrow time frame of interest or to keep the same width over time.

For our situation, the “patient flow” through the model carries important information

independent of the estimate precision or the size of the risk set. A decreasing risk set

in the initial state, e.g., could imply an increasing cure proportion while a decreasing

risk set in state 1 points to frequent mortality cases after cure. Such information is

highly important for a treatment comparison and motivates the use of a quantile qα

independent of time.

The challenge is now to approximate the distribution of D(0, t). The idea is to approx-

imate the limit distribution of the Nelson-Aalen estimate in a first step and to use this

information for approximating the limit distribution of the Aalen-Johansen estimate a

the second step:

Step 1

Let the counting processes Yl,i(t), Yl(t), Nlj,i(t), and Nlj(t) as well as the Nelson-Aalen

and Aalen-Johansen estimate be defined as in Section 3.1. According to Andersen et

al. [112], it is shown that

Mlj,i(t) := Nlj,i(t)−
∫ t

0

Yl,i(u)λlj(u)du

are martingales and that
√
n
(

Λ̂lj(u)− Λlj(u)
)

has a martigale representation

√
n

n∑
i=1

∫ t

0

1(Yl(u) > 0)

Yl(u)
dMlj,i(u). (19)

Using these arguments and the martigale central limit theorem (Theorem II.5.1 in [112]),
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convergence in distribution to a zero mean Gaussian limit process

√
n
(
Λ̂(t)−Λ(t)

)
d−→ U = (Ulj)l,j∈S , (20)

the central limit theorem for the Nelson-Aalen estimator (Theorem IV.1.2 in [112]), is

proven, while U contains independent Gaussian martingales as non-diagonal entries.

To approximate U and to follow the idea of Lin [91], the unknown martignales in

(19) are substituted by known quantities Glj,idNlj,i(u), the so-called multipliers, while

conditioning on the data. In Lin, Glj,i is chosen to be standard normal, but also other

variables are possible, as shown in Beyersmann et al. [92]. This results in a wild

bootstrap version ξ(t) = (ξlj(t))l,j∈S, a 3× 3 matrix process with non-diagonal entries

ξlj(t) =
√
n

n∑
i=1

∫ t

0

1(Yl(u) > 0)

Yl(u)
Glj,idNlj,i(u)

of the left-hand side of (20) whose distribution may be approximated by simulating a

large number of Glj,i replicates. To approximate the limit distribution, the wild boot-

strap resampling is mathematically not required in the first step since the limit process

has independent increments. Nevertheless, this is needed afterwards when making in-

ference on transition probabilities.

Step 2

The matrix of transition probabilities can be expressed in terms of cumulative hazards

using product integration

P(s, t) = P
u∈(s,t]

(I + dΛ(u)),

as in (10). Here, I is the 3×3 identity matrix. This gives the Aalen-Johansen estimator

by including the Nelson-Aalen estimator for the cumulative hazard, as in (14). Again,

we know out of martingale theory and the functional delta method (Theorem II.8.1 in
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[112]) that the stochastic process on the left-hand side converges in distribution to a

zero mean Gaussian limit process

√
n
(
P̂(s, t)−P(s, t)

)
d−→
∫ t

s

P(s, u)dU(u)P(u, t), (21)

the central limit theorem for the Aalen-Johansen estimator (Theorem IV.4.2 in [112]).

The problem is that in (21), a martignale representation is much more complicated com-

pared to (20) since the Gaussian limit process lacs independent increments resulting into

an enormously complicated covariance structure. The process cannot be approximated

by a Brownian bridge. The trick is to plug in ξ(u) for U(u) into (21) and to receive

convergence in distribution∫ t

s

P(s, u)dξ(u)P(u, t)
d−→
∫ t

s

P(s, u)dU(u)P(u, t),

while the left-hand side is approximated by

ζ(s, t) :=

∫ t

s

P̂(s, u)dξ(u)P̂(u, t). (22)

For the cure-death model, (22) is a 3× 3 matrix where entries (1,0) and (2,0) are zero

and (2,2) is 1. Entries (0,0) and (1,1) are Kaplan-Meier-type estimators P̂00(s, t)ξ00(t)

and P̂11(s, t)ξ11(t). Entry (0, 1) is∫ t

s

P̂00(s, u)dξ00(u)P̂01(u, t) +

∫ t

s

P̂00(s, u)dξ01(u)P̂11(u, t) +

∫ t

s

P̂01(s, u)dξ11(u)P̂11(u, t),

entry (0, 2) is∫ t

s

P̂00(s, u)dξ00(u)P̂02(u, t) +

∫ t

s

P̂00(s, u)dξ01(u)P̂12(u, t) +

∫ t

s

P̂01(s, u)dξ11(u)P̂12(u, t)

+

∫ t

s

P̂00dξ02(u) +

∫ t

s

P̂01(s, u)dξ12(u),

and entry (1, 2) is ∫ t

s

P̂11(s, u)dξ11(u)P̂12(u, t) +

∫ t

s

P̂11(s, u)dξ12(u).
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The distribution of D(0, t) can now be approximated by

D̂(0, t) :=
ζA01(0, t)
√
nA

− ζB01(0, t)
√
nB

,

where ζA01(0, t) and ζB01(0, t) are the treatment-specific functions. Finally, the boundary

value qα is evaluated through simulation such that

P

(
max
t∈[0,τ ]

D̂(0, t) > qα

)
= α.

In other words, and for α = 5%, the procedure determines qα via resampling such that

0.95 = P

(
max
t∈[0,τ ]

D̂(0, t) ≤ qα

)
≈ P

((
P̂A

01(t)− PA
01(t)

)
−
(
P̂B

01(t)− PB
01(t)

)
≤ qα ∀t ∈ [0, τ ]

)
= P

(
P̂A

01(t)− P̂B
01(t)− qα ≤ PA

01(t)− PB
01(t) ∀t ∈ [0, τ ]

)
guaranteeing that the true difference in the treatment-specific probabilities of being

cured and alive lies above the lower margin P̂A
01(t)− P̂B

01(t)− qα of the derived one-sided

time-simultaneous confidence band for all t ∈ [0, τ ] with a probability of approximately

95%. This induces an α-level non-inferiority test. In practice, it is recommended to

decide for an interval [0, τ ] that covers the first and last failure time since asymptotic

approximations tend to be poor beyond these times [91].

Non-inferiority and superiority hypotheses

While the test for a non-inferiority analysis is based on the hypotheses

H0 : PA
01(0, t)− PB

01(0, t) ≤ δabs versus H1 : PA
01(0, t)− PB

01(0, t) > δabs,

with δabs as margin suitable for this absolute effect measure, the test for a superiority

analysis is based on the hypotheses

H0 : PA
01(0, t)− PB

01(0, t) ≤ 0 versus H1 : PA
01(0, t)− PB

01(0, t) > 0.



44 Chapter 4: TREATMENT COMPARISON

4.3 Pseudo-value regression

The transition probability of being cured and alive introduced in Section 3.2 is of main

interest, where the Aalen-Johansen estimate is given by a product integral of transition

intensities. However, plugging in the estimated transition intensities does not directly

give estimates of covariate effects on the transition probability of interest since these are

complex non-linear functions [120]. For this, Scheike et al. [121] proposed a binominal

modelling approach to construct direct regression models for transition probabilities

based on the inverse probabilities of censoring weighting technique. This approach

was further extended by Azarang et al. [122]. Pseudo-value regression, proposed by

Andersen et al. [88] and Andersen and Klein [89], provides an alternative technique for

direct regression modelling of transition probabilities and thus, to test for treatment

difference [123, 53]. It was first applied to an illness-death model in the setting of graft-

versus-host disease after bone marrow transplantation [88] but found its application

also in other settings, as, e.g., in Liu et al. [53] to study current leukaemia-free survival

or in Grand and Putter [124] to explore the impact of socio-economic factors on the

expected length of stay in health and disability. The idea is to obtain pseudo-values

from a jackknife statistic constructed from a consistent estimator of the probability of

interest that are further utilised as outcome variables in a generalised linear model.

Model parameters are further estimated using generalised estimating equations (GEEs)

[125].

Obtain pseudo-values

We begin with selecting a set of K timepoints sk, k ∈ {1, . . . , K}, on which we want

to perform regression. The pseudo-values for every patient i, i ∈ {1, . . . , n}, and every
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timepoint k are computed as

θ̂i(sk) = n · P̂01(0, sk)− (n− 1) · P̂ (−i)
01 (0, sk), i ∈ {1, . . . , n},

where P̂01 is the estimated transition probability using the complete sample and P̂
(−i)
01

the one based on the sample without the ith observation, the so-called “leave-one-out

estimator”. To continue, a consistent estimator of the transition probability is needed,

provided by the Aalen-Johansen estimator. The pseudo-values θ̂i =
(
θ̂i(s1), . . . , θ̂i(sk)

)
can be seen as the contribution of subject i to the estimate of interest [120]. The data

of some patients might be right-censored when incompletely observed and so is the

estimator P̂01. The idea is to replace the incomplete observed data with the pseudo-

value and treat it as it was raw data. The advantage is that pseudo-values are still

defined for all individuals at all timepoints event if right-censoring is present. In the

absence of censoring, this approach is equivalent to using the raw data and the pseudo-

value reduces to an indicator of whether the patient is in state 1 at time sk [126].

Estimate regression coefficients

Once pseudo-values for the selected timepoints and each patient are obtained, we con-

tinue with a generalised linear model

g(P01(sk | Z)) = β′Z,

with log link function g, parameter vector β, and covariate vector Z. The choice of

the link function is important for the interpretation of the regression parameters [127].

Finally, we estimate the regression parameters using a generalised estimating equation

[125]

U(β) =
∑
i

(
dg−1(β′Zi)

dβ

)
W−1
i

(
θ̂i − g−1(β′Zi)

)
,
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with identity matrix for the working covariance matrix Wi. While an identity matrix

is often used for simplicity, Andersen and Klein [89] showed via simulations that an

empirical working covariance matrix has a slightly smaller mean squared error. The

covariance matrix of β̂ is estimated via an ordinary sandwich variance estimator. Graw

et al. [128] provided proofs regarding the asymptotic properties of this approach in

the competing risks setting, e.g., showing asymptotic equivalence of the uncensored

observations and the pseudo-values with respect to their conditional expectations given

covariates. Overgaard et al. [129] provided more refined and general proofs for the

competing risks case, extending the result of consistency and asymptotic normality

given by Jacobsen and Martinussen [130] for the survival case. Their approach may be

further extended for general multistate models.

Choice of timepoints

As mentioned before, a selection of timepoints has to be made. When focusing on one

timepoint only, the pseudo-value regression model can be compared to a censored data

logistic regression model. Using all event times leads to large matrices in the GEE and

consequently to a loss of efficacy such that most researchers have proposed to restrict

to 5–10 timepoints equally spaced on the event time scale to capture a greatest possible

information about the event time distribution without losing efficacy [126, 120, 131].

Non-inferiority and superiority hypotheses

To examine a treatment effect, exp(β̂) for treatment as covariate can be interpreted

as a cure risk ratio (CRR) and tests for non-inferiority analyses can be based on the

hypotheses

H0 : CRR ≤ δrel versus H1 : CRR > δrel,
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with δrel as margin suitable for this relative effect measure. The test for a superiority

analysis is based on the hypotheses

H0 : CRR ≤ 1 versus H1 : CRR > 1.
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4.4 Restricted log-rank-based test

Hsieh et al. [87] propose several tests comparing treatments on the basis of a semi-

Markov model. The restricted log-rank-based test, e.g., is a non-parametric method

to manage ordered categories of responses and to integrate information on duration of

response that fits to the situation present in the cure-death model.

To begin, let us have a look at a proportional transition-specific hazard model which

assumes the hazard of each transition j ∈ {01, 02, 12} in the cure-death model to follow

a Cox model [84]

λj(t | Zi) = λj;0(t) exp(β′jZi), (23)

with non-negative baseline hazard function λj;0(t) and linear predictor β′jZi. The partial

likelihood, originally introduced by Cox [132], is used for estimation of the regression

coefficients and can be written as

L(β01, β02, β12) = L01(β01)× L02(β02)× L12(β12)

=

K01∏
k=1

exp(β′01Z(k))∑
r∈Rt01(k)

exp(β′01Zr)
×

K02∏
k=1

exp(β′02Z(k))∑
r∈Rt02(k)

exp(β′02Zr)
×

K12∏
k=1

exp(β′12Z(k))∑
r∈Rt12(k)

exp(β′12Zr)
,

where Rt01(k) and Rt02(k) are the sets of individuals that are still in state 0 at transition

time t01(k) or t02(k) and at risk for transition 01 or 02, respectively. Rt12(k) is the set of

individuals that are still alive at the transition time to death t12(k). K01 is the total

number of individuals reaching state cure, K02 the total number of individuals reaching

state death without being cured, and K12 the total number of individuals reaching death

after being cured. The likelihood can be factorised for each j so that we can formally

analyse each transition separately by treating the others as censored. A test of βj = 0

is given as a simple score statistic with the score function[
∂ logL01(β01)

∂β01

,
∂ logL02(β02)

∂β02

,
∂ logL12(β12)

∂β12

]
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and the negative expected value of the second derivative of the partial likelihood func-

tion as information matix.

As mentioned in Section 2.1, the score test statistic for the Cox partial likelihood

is the same as the log-rank test statistic when the data consists of failure time data

in two groups. This is due to the fact that the numerator of the score test for a test

of βj = 0 turns out to be identical to the numerator, # observed minus # expected,

of the log-rank test [102]. Moreover, the estimated variance obtained from the Cox

model is nearly identical to the denominator in the log-rank test. Let us have a deeper

look into the construction of the log-rank test statistic. It compares estimates of the

hazard functions of two (treatment) groups A and B at each time l where there is an

event the following way: For each time l ∈ {1, . . . , L}, let RAl and RBl be the number

of subjects at risk and Rl = RAl + RBl. Let OAl and OBl be the observed number of

events in the groups respectively at time l, and define Ol = OAl +OBl. Under the null

hypothesis of treatment equality and given that Ol events happened at time l, OAl is

hypergeometrically distributed with parameters Rl, RAl, and Ol. This distribution has

expected value EAl = Ol
Rl
RAl and variance Vl = Ol(RAl/Rl)(1−RAl/Rl)(Rl−Ol)

Rl−1
. Finally, the

log-rank test statistic compares each observed value OAl to its expectation value EAl

and is defined as

(O − E)2

V
:=

(∑L
l=1 OAl −

∑L
l=1 EAl

)2

∑L
l=1 Vl

.

General log-rank-based test

Such a test is sensitive to deviations from the null hypothesis of βj = 0 of any type. It

is constructed by computing the observed and expected number of events (O and E)

for each transition 01, 02, or 12, in one of the groups at each observed event time and

then adding these to obtain an overall summary across all timepoints where there is an

event, divided by the variance V . The log-rank-based test (LT) results in the sum of
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three under H0 asymptotically independent log-rank test statistics

χ2
LT := χ2

01 + χ2
02 + χ2

12

=
(O01 − E01)2

V01

+
(O02 − E02)2

V02

+
(O12 − E12)2

V12

H0∼ χ2(3).

Restricted log-rank-based test

Yet, the model is not adapted to the request that a transition to cure is preferred over

a transition to death. The overall aim is that a patient passes into state 2 (death) as

late as possible and remains in state 1 (cure) as long as possible. With a restriction to

the regression coefficients in the partial likelihood (β01 = −β12 = −β02), the restricted

log-rank-based test (RLT) respects that ordered response and results in

χ2
RLT :=

(ORL − ERL)2

VRL

H0∼ χ2(1),

a test with an embedded structure where ORLT := O02 − O01 + O12, ERLT := E02 −

E01 + E12, and VRLT := V02 + V01 + V12. It incorporates all required aspects into one

single statistic being χ2-distributed with one degree of freedom. This restricted version

is sensitive to deviations from the null hypothesis if a transition to cure dominates a

direct death transition and if cured, a patient remains in the cure state. Hsieh et al.

[87] showed that this test statistic achieves the highest power when one treatment is

better than the other for all three transitions in the desired way (more patients are

cured, less patients die directly, and less patients die after cure).

The restricted log-rank-based test achieves only high power if one treatment is better

than the other for all three transitions [87]. Another point is that the direction of

difference cannot be discerned by a test statistic based on a quadratic form such that

non-inferiority analyses are not possible. Strictly speaking, it only fits to tests for

equality.
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Remark

These tests can easily be extended if an additional state needs to be included. In Section

6.1, Figure 6.1, they will be of the form

χ2
LT = χ2

01 + χ2
02 + χ2

12 + χ2
03 + χ2

32

=
(O01 − E01)2

V01

+
(O02 − E02)2

V02

+
(O12 − E12)2

V12

+
(O03 − E03)2

V03

+
(O32 − E32)2

V32

H0∼ χ2(5)

and

χ2
RLT =

(ORLT − ERLT )2

VRLT

H0∼ χ2(1),

where ORLT := O02−O01 +O12 +O03 +O32, ERLT := E02−E01 +E12 +E03 +E32 and

VRLT := V02 + V01 + V12 + V03 + V32.

For multistate model 6.6 in Section 6.2, e.g., they will be of the form

χ2
LT = χ2

01 + χ2
02 + χ2

13 + χ2
14

=
(O01 − E01)2

V01

+
(O02 − E02)2

V02

+
(O13 − E13)2

V13

+
(O14 − E14)2

V14

H0∼ χ2(4)

and

χ2
RLT =

(ORLT − ERLT )2

VRLT

H0∼ χ2(1),

where ORLT := O02 − O01 + O13 + O14, ERLT := E02 − E01 + E13 + E14 and VRLT :=

V02 + V01 + V13 + V14.
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Or for multistate model 6.9 in Section 6.3, e.g., they will be of the form

χ2
LT = χ2

01 + χ2
02 + χ2

12 + χ2
13

=
(O01 − E01)2

V01

+
(O02 − E02)2

V02

+
(O12 − E12)2

V12

+
(O13 − E13)2

V13

H0∼ χ2(4)

and

χ2
RLT =

(ORLT − ERLT )2

VRLT

H0∼ χ2(1),

where ORLT := O02 − O01 + O12 − O13, ERLT := E02 − E01 + E12 − E13 and VRLT :=

V02 + V01 + V12 + V13.
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5 SIMULATION

The purpose of the following simulation is to demonstrate how the cure-death model

and the proposed methods for a treatment comparison handle simple and complex

treatment imbalances. For ease of illustration, we assume the transition hazards to be

constant. Data is generated according to Beyersmann et al. [41], where for the stan-

dard treatment, “treatment B”, we choose time constant hazard rates λ01(t)B = 0.07,

λB02(t) = 0.04, and λ12(t)B = 0.02 and for the innovative treatment, “treatment A”,

several scenarios are examined. Also, no additional censoring is generated.

We compare the methods introduced in Section 4 in a non-inferiority and superiority

setting. However, the restricted log-rank-based test out of Section 4.4 cannot be used for

non-inferiority analyses. Furthermore, we will apply the confidence band procedure out

of Section 4.2 only in the non-inferiority setting, since, for superiority analyses, a par-

ticular part of the time frame has to be chosen dependent on the clinical setting. Also,

to make a difference- versus ratio-based effect measure comparable for non-inferiority

analyses, let us make the following consideration:

H0 : IA − IB ≤ δabs = f · IB

⇔ H0 : IA ≤ IB · (f + 1)

⇔ H0 :
IA

IB
≤ f + 1.

For δ, let us assume a hypothetical margin of −12.5%, as proposed in the EMA guideline

for the comparison of clinical cure rates [20]. For IB, let us assume the end of follow-

up to be at day 30 and generate 1000 data sets with 300 individuals each using the

transition rates mentioned above. This gives a mean proportion of patients being cured
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and alive of approximately 42%, our “baseline risk”. Thus,

−12.5% = f · 42%

⇒ f = −0.3

⇒ H0 :
IA

IB
≤ −0.3 + 1 = 0.7 = δrel,

such that a comparable cure risk ratio for a non-inferiority margin of −12.5% is 0.7

with a baseline risk of being cured and alive of 42%.

5.1 Simulation scenarios

Several simulation scenarios for the new treatment “treatment A” were examined for a

treatment comparison with 50 and 300 individuals in each treatment group and 1000

simulated studies. The cause-specific hazard ratio is given for transition 01 and 02 and

the hazard ratio for transition 12; treatment differences are marked in bold:

• Scenario 1: Treatment A is better in the cure rate (more cure cases),

λA
01 = 0.14 (CSHR=2),

λA02 = 0.04 (CSHR=1),

and λA12 = 0.02 (HR=1)

• Scenario 2: Treatment A is better for death after cure (less death cases),

λA01 = 0.07 (CSHR=1),

λA02 = 0.04 (CSHR=1),

and λA
12 = 0.005 (HR=0.25)

• Scenario 3: Treatment A is better for death without being cured,

λA01 = 0.07 (CSHR=1),

λA
02 = 0.01 (CSHR=0.25),

and λA12 = 0.02 (HR=1)
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• Scenario 4: Treatment A better in both mortality rates,

λA01 = 0.07 (CSHR=1),

λA
02 = 0.01 (CSHR=0.25),

and λA
12 = 0.005 (HR=0.25)

• Scenario 5: Treatment A is better in the cure rate but worse in mortality rates,

λA
01 = 0.14 (CSHR=2),

λA
02 = 0.06 (CSHR=1.5),

and λA
12 = 0.03 (HR=1.5).

An overview of all simulation scenarios can be found in Table 5.1.

Scenario λA01 CSHR λA02 CSHR λA12 HR

1 0.14 2 0.04 1 0.02 1

2 0.07 1 0.04 1 0.005 0.25

3 0.07 1 0.01 0.25 0.02 1

4 0.07 1 0.01 0.25 0.005 0.25

5 0.14 2 0.06 1.5 0.03 1.5

λB01 0.07 0.04 0.02

Table 5.1: Overview of all five simulation scenarios with λA01 as transition hazard for the

treatment group and λB01 as transition hazard for the control group. CSHR = Cause-

specific hazard ratio, HR = Hazard ratio, effect measures for treatment divided by

control.
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5.2 Results

Risk differences cured and alive

In Figure 5.1, risk differences with 95% confidence intervals can be seen using the overall

proportions of patients cured and using the proportions of patients cured and alive at

day 30 with a hypothetical non-inferiority margin of −12.5%. For both, mean values

over 1000 studies are presented. In Scenario 1, treatment A is superior concerning cure.

The overall risk difference for cured patients is 14.8%, significantly favouring treatment

A. Using only patients cured and alive at day 30, the confidence interval is wider and

covers zero (value of no effect). In Scenario 2, more patients stay alive after being cured

for treatment A. While there is no difference in the analysis using only patients cured,

the proposed analysis using patients cured and alive shows a significant effect favouring

treatment A. In Scenario 3, there is no huge difference among the analysis strategies

but both measures show a positive effect for treatment A because the competing event

death without being cured has less impact. In Scenario 4, where treatment A is better in

both mortality hazards, the analysis strategies differ substantially since patients rather

stay cured and alive, comparable to Scenario 2. It is interesting that in Scenario 5,

when analysing proportions of patients cured and alive at day 30, the risk difference is

negative and non-inferiority is not given anymore, while a positive effect is present using

only patients cured. This scenario is motivated by trials with extremely high mortality

rates or when a microbiological cure is examined (the pathogen is eradicated but the

patient dies due to a toxic treatment).

To be cured and alive over time

In the left part of Figure 5.2, the probability to be cured and alive for treatment A and

B is displayed to get an overview how the different scenarios perform over the interval
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[0, 40]. The difference in probabilities is given in the right part of Figure 5.2. The

curves represent mean values over the Aalen-Johansen estimates from 1000 simulated

studies. In Scenario 1, the superiority of treatment A concerning cure can be seen

especially during the first phase. After a while, when transitions from cure to death

occur with the same rate, the difference between treatmens becomes less. In Scenario

2, more patients stay alive after being cured for treatment A. Since transitions from

cure to death occur mostly later in time, a treatment difference is present only after a

while. A similar picture can be seen in Scenario 3 and 4. In Scenario 5, a positive effect

can be seen during the first days but curves cross since the 1 → 2 transition is more

exposed for treatment A.

Additionally, plots representing the overall probability to die are given in Figure

5.3. Here, the curves show mean values over the Kaplan-Meier estimates from 1000

simulated studies.

Power estimates

Power estimates for the non-inferiority and superiority null hypotheses are summarised

in Table 5.2. Results are given for the chi-squared test for equality of proportions cured

and alive at day 30, the test based on confidence bands, the pseudo-value regression

results using ten times equally distributed over the whole time frame and at day 30,

and the restricted log-rank-based test for the difference of two transition probabilities.

The chi-squared test for equality of proportions cured and alive at day 30 is very similar

to the pseudo-value regression results comparing transition probabilities at day 30, espe-

cially with a larger group of individuals. Pseudo-value regression using ten times equally

distributed over the whole time frame represents the difference between the curves dis-

played in Figure 5.2 best, when interest is focused on a relative effect measure. The
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procedure using confidence bands is stricter in comparison to pseudo-value regression,

especially when there are only few individuals available, resulting in a wide confidence

band. Using a larger amount of individuals, the performance improves promptly due to

much more narrow confidence bands. The restricted log-rank-based test detects given

treatment differences satisfactory and is not limited to examining one timepoint only.

In Scenario 5, interpretation of a combined risk over the whole time frame is possible

only to a limited extent since the treatment advantage changes over time.

5.3 Discussion

For a complete picture, transition probabilities should be taken into account. Pseudo-

value regression using ten times equally distributed over the whole time frame provides a

possibility to analyse effects at several timepoints simultaneously. If intended, a specific

time interval of interest can be examined in more detail. Thus, it could be helpful

in settings like in Scenario 5, where the effect changes over time and interpretation

may depend on which risk is more important at what time. This technique results in

a relative effect measure for treatment difference, comparable to a relative risk over

time. However, absolute effect measures are often of interest, where the method using

confidence bands is better suited. Looking at the absolute difference over time in

combination with confidence bands could provide a valuable statistical tool for such

analyses, especially when treatment effects vary over time. Although the restricted

log-rank-based test performs quite well, it does not directly concern the transition

probability of interest. Moreover, it is only applicable for superiority analyses and thus,

not recommended in this setting.
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Figure 5.1: Risk differences with 95% confidence intervals for the comparison of two

antimicrobial therapies. Hypothetical non-inferiority margin was set to −12.5%. Risk

differences using the overall proportions of patients cured are displayed in black, risk

differences using the proportions of patients cured and alive at day 30 are displayed in

grey.
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Figure 5.2: Mean transition probabilities and their difference for the simulation scenar-

ios with 300 individuals in each treatment group and 1000 independent data sets.
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Figure 5.3: Mean probabilities to die for the simulation scenarios with 300 individuals

in each treatment group and 1000 independent data sets.
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6 APPLICATION

6.1 Ceftobiprole trial

The cure-death model provides a suitable framework for analysing the data of the

recently published ceftobiprole trial [95]. As in this data example, one of the problems

that usually arise is that for patients who achieved the cure state after the TOC, this is

not recorded anymore. A consequential special feature of the such data is that patients

after the TOC or patients who experienced a clinical failure are no longer under risk

for transition from randomisation to cure in Figure 2.3. Thus, the log-rank-based test

statistics have to be extended to be suitable to the model in Figure 6.1 as explained

in Section 4.4. Here, an additional state “failure” is used for patients where systemic

nonstudy antibiotics between baseline and the TOC visit for the treatment of pneumonia

were received or an adverse event occurred.

6.1.1 The trial

The present non-inferiority trial [95] compared the new regimen ceftobiprole, established

to combat a wide range of gram-positive bacteria, such as, e.g., Staphylococcus aureus,

to the two-drug regimen ceftazidime / linezolid. It was a double-blind, randomised,

multicentre phase III comparison in 781 patients with HAP, among them 210 with

VAP, conducted during April 2005 and May 2006 in 157 sites in Europe, North and

South America, and the Asia-Pacific region.

Clinical cure diagnosed at the TOC visit, mostly held within a time frame of 7 up to

14 days after the end of treatment, served as primary endpoint, all-cause mortality as

secondary. With the protocol-defined non-inferiority margin of −15%, risk differences

of proportions of cured patients at the TOC showed that ceftobiprole is non-inferior
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to ceftazidime / linezolid for the entire study population of patients with HAP (−2.9

[−10.0, 4.1]) and HAP excluding VAP (0.8 [−7.3, 8.8]). But, non-inferiority was not

demonstrated in VAP patients (−13.7 [−26.0, −1.5]) since the previous 95% confidence

interval is not completely included in [−15, ∞). These results were given in [95] and

refer to ceftobiprole minus ceftazidime / linezolid.

0

1

3

2

λ01(t)

λ03(t)

λ02(t)

λ12(t)

λ32(t)

Randomisation

Cure at TOC

Death

Failure

Figure 6.1: The extended cure-death model for the comparison of two antimicrobial

therapies in the ceftobiprole trial [95]. Let λ01(t) be the cure rate for cure at the test

of cure (TOC) visit, λ02(t) the mortality rate without being cured at TOC, λ03(t) the

failure rate for failure at TOC, λ12(t) the rate to die after deemed cured at TOC, and

λ32(t) the rate to die after deemed as a failure at TOC.
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6.1.2 Results

The data visualisation in Figure 6.3 provides an illustration of the time course of events

for the ceftobiprole and the ceftazidime / linezolid group. On the x-axis, time from

randomisation, which equals time from treatment, is shown. Individuals are ordered

according to their time on treatment. Clinical cure is displayed in the form of grey

filled dots after the grey lines describing the time on treatment. The follow-up time

was more than 30 days for the majority of patients and it can be seen that many patients

die shortly after randomisation (bottom left black filled dots), probably due to their

underlying disease. Censoring is rare before day 28 (few unfilled dots on the left-hand

side) and, obviously, death from any cause acts as a competing event (bottom left black

filled dots). Patients dying after cure are marked with a cross.
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Figure 6.2: Aalen-Johansen estimator and alternative Kaplan-Meier-type estimator for

the PCA function including all patients of the ceftobiprole trial [95].
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Figure 6.3: Data visualisation for the treatment groups of the ceftobiprole trial [95]. On

the x-axis, time from randomisation, which equals time from treatment, is displayed.

Cure at TOC is displayed in the form of grey filled dots after the grey lines describing

the time on treatment. The black filled dots represent death cases, patients dying after

cure are marked with a cross. Censoring can be seen via unfilled dots.
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The Markov assumption

To check if the Markov assumption is fulfilled, we studied the influence of the interme-

diate event time, the time to cure, on the mortality transition of cured patients using a

Cox proportional hazards model [84]. In other words, we kept the waiting time in state

1 in a regression model for the 1→ 2 hazard [41]. This model reported a non-significant

coefficient (p = 0.73) for the time to cure. We further examined the alternative Kaplan-

Meier-type estimator for the PCA function not relying on the Markov assumption that

was introduced in Section 3.2. Figure 6.2 shows that both the Aalen-Johansen estima-

tor and the alternative Kaplan-Meier-type estimator are equal such that we considered

the Markov assumption to be appropriate to analyse this data.

Risk differences cured and alive

Repeating the analysis with risk differences and confidence intervals for the proportion

of patients cured and alive at day 30 in comparison to risk differences and confidence

intervals for the proportion of cured patients showed consistent results due to very few

transitions from cure to death: The risk difference concerning only patients cured and

alive at day 30 for the entire sample results in −2.43 [−9.44, 4.58]. In HAP excluding

VAP patients, we calculated 1.51 [−6.62, 9.63] and in the subset of patients with VAP

−13.77 [−25.64, −1.90].

Transition probability and simultaneous confidence bands

The Aalen-Johansen estimator of the probability to be cured and alive over the whole

time frame of interest is displayed in the left part of Figure 6.4. For the entire sam-

ple and the HAP excluding VAP group, the probability curves show a similar course

across treatment groups. In the VAP only group, there is a clear distinction between

treatments, favouring ceftazidime / linezolid.
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The right part of Figure 6.4 illustrates the difference in probabilities of being cured

and alive together with the 95% one-sided simultaneous confidence band (dashed black

line) on the time interval of interest [0, 47]. The interval is chosen such that all observed

transition times are covered. The boundary values q for the construction of the respec-

tive confidence band are also displayed. It can be seen that for both the entire sample

and the HAP excluding VAP group, the confidence band lies above the non-inferiority

margin of −15% (grey solid line) for the entire interval [0, 47], but not for the group

of VAP patients. Hence, for the entire sample and the HAP excluding VAP group,

non-inferiority concerning cure and alive over the time period of interest is shown. All

results do support the original analysis [95], which showed non-inferiority of overall cure

proportions for both the entire sample and the HAP excluding VAP group.

Pseudo-value regression

For the pseudo-value regression, a comparable non-inferiority margin to −15% in the

sense of a CRR would be 0.7, calculated as in Section 5. We investigated the effect over

the whole time frame including ten times equally distributed (sk = {12, 15, 18, . . . , 39})

and at day 30 (sk = 30). For the subgroup of patients with HAP, non-inferiority can be

shown. It results in CRR = 0.92 [0.80, 1.05] (whole time frame) and CRR = 0.92 [0.80,

1.06] (day 30). Also for HAP excluding VAP since we obtain CRR = 1.00 [0.87, 1.15]

(whole time frame) and CRR = 1.00 [0.88, 1.15] (day 30). For the subgroup of patients

with VAP, non-inferiority is not demonstrated because CRR = 0.55 [0.35, 0.87] (whole

time frame) and CRR = 0.58 [0.38, 0.89] (day 30).

General and restricted log-rank-based test

The general log-rank-based test gives a non-significant difference between the treatments

for all patients (p = 0.75) and the subset of patients with HAP excluding VAP (p =
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0.90). For VAP patients the analysis does indicate some, albeit weak evidence for

a treatment difference (p = 0.06). The restricted log-rank-based test gives a non-

significant difference between the treatments for all patients (p = 0.25) and the subset

of patients with HAP excluding VAP (p = 0.91) and a significant difference for VAP

patients (p = 0.01).

In order to only examine the overall probability to die we used 1 minus Kaplan-Meier

estimator plots, as can be seen in Figure 6.5. Only in VAP patients, a treatment

difference can be seen. We performed a simple log-rank test, yielding a p-value of 0.62

for the whole group, p = 0.54 for the subset of patients with HAP excluding VAP, and

p = 0.07 for the VAP patients.

6.1.3 Discussion

Our analysis illustrates the advantageous feature of the cure-death model. Here, it

does not only confirm non-inferiority of ceftobiprole as found in Awad et al. [95],

but provides a stronger and more patient-benefiting non-inferiority result: First, the

endpoint“get cured and stay alive over time” is a highly relevant outcome in the context

of antimicrobial trial data because patients only benefit from cure when staying alive

for a certain time. Second, we demonstrate non-inferiority of being cured and alive

over the complete treatment process and not only at the end of follow-up as intended

in the original analysis. Third, in contrast to the traditional proportion comparisons,

the comprehensive cure-death multistate model captures the complex timing of cure

and death, competing events, and also allows for different follow-up times due to death

or right-censoring. Moreover, the Markov assumption, that is required for the Aalen-

Johansen estimator, was appropriate to analyse the data.
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Figure 6.4: Transition probabilities derived from the Aalen-Johansen estimator for sub-

groups in the ceftobiprole trial [95]. Left: probability to be cured and alive. Right:

estimated difference of probabilities with 95% one-sided simultaneous confidence bands

(CB), corresponding boundary value q, and protocol-defined non-inferiority (NI) margin

of −15% on the time interval [0, 47].
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Figure 6.5: Probability to die over time using 1 minus Kaplan-Meier estimates for

subgroups in the ceftobiprole trial [95].
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6.2 MODIFY I+II trial

The cure-death framework can be adapted to more complex disease histories as, e.g.,

patients with Clostridium difficile, the most common cause of infectious diarrhea in

hospitalised patients. Avoiding a recurrent Clostridium difficile infection (rCDI) is

often of major interest, such as in [96]. However, the analysis of prevention effects

on rCDI has two challenges. First, infected patients need to be initially cured before

acquiring an rCDI. Second, patients might die during follow-up; thus, death is a classical

competing event for cure and rCDI. Moreover, it is a highly relevant interest from the

patients’ perspective how an active treatment performs over the complete cure process.

Therefore, we strongly recommend the time-dependent endpoint “clinical cure, free of

rCDI, and alive over time” as key secondary endpoint of interest by applying the cure-

death model. This represents a much stronger endpoint than comparing sustained cure

(clinical cure and no rCDI) proportions at the end of follow-up [3].

A suitable multistate model is able to account for the time-dynamic pattern of CDI

cure, death, and rCDI. We will use an extended cure-death multistate model with

an initial infusion state, a cure state, an rCDI state, and competing risks states as

in Figure 6.6. According to the study protocol, all patients start in state 0, that is

infusion, immediately after randomisation to a treatment. The timescale of interest is

“time since infusion” in weeks.

6.2.1 The trial

In a recent article, Wilcox et al. [96] present results of the MONOCOLONAL AN-

TIBODIES FOR C DIFFICILE THERAPY (MODIFY) I and II trial, examining the

safety and efficacy of actoxumab and bezlotoxumab. These were two double-blind, ran-

domised, placebo-controlled, multicentre phase III trials conducted at 322 sites in 30
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countries from 2011 to 2015. In MODIFY I and II, a total of 2655 patients randomised

and 2580 being treated for Clostridium difficile infection received a standard treatment

in combination with either actoxumab / bezlotoxumab (779 patients), bezlotoxumab

(788 patients), actoxumab (235 patients), or placebo (778 patients). A total of 2560

patients were included in the efficacy analyses, that is the modified intention-to-treat

(mITT) population, namely actoxumab / bezlotoxumab (773 patients), bezlotoxumab

(781 patients), actoxumab (232 patients), and placebo (773 patients). Actoxumab was

not evaluated anymore in MODIFY II since earlier results indicated a lack of efficacy

[133] that is why we focus on three treatment groups, actoxumab / bezlotoxumab,

bezlotoxumab, and placebo.
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Competing event
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Figure 6.6: A modified cure-death multistate model with an initial infusion state, a cure

state, a state of recurrent Clostridium difficile infection (rCDI), and competing event

states (including, e.g., treatment failure and death). The direction of arrows illustrates

the potential transition between the states determined by a transition hazard.
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The primary endpoint was rCDI, defined as a new episode of infection after initial

clinical cure within 12 weeks after infusion. Also sustained cure was analysed at the

end of week 12 as secondary endpoint. Consistent results were seen in both MODIFY

I and MODIFY II, demonstrating superior efficacy of bezlotoxumab and actoxumab

/ bezlotoxumab in the prevention of rCDI compared to placebo. The rates of initial

clinical cure were 80% with bezlotoxumab, 73% with actoxumab / bezlotoxumab, and

80% with placebo and the rates of sustained cure were 64%, 58%, and 54%, respectively.

6.2.2 Reconstruction of transition rates

In accordance with the information presented in Wilcox et al. [96], we simulate an

“artificial” data set under the Markov assumption with the aim to be as close as pos-

sible to the original data of the MODIFY I and II trial. No additional censoring is

generated. The following information are used to reconstruct transition rates that are

further utilised for simulation:

• Proportions initial clinical cure

625/781 = 80% for bezlotoxumab

568/773 = 73% for actoxumab / bezlotoxumab

621/773 = 80% for placebo

• Proportions rCDI of full analysis set

129/781 = 17% for bezlotoxumab

119/773 = 15% for actoxumab / bezlotoxumab

206/773 = 27% for placebo
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• Proportions sustained cure (cure and no rCDI)

(568− 119)/773 = 58% for bezlotoxumab

(625− 129)/781 = 64% for actoxumab / bezlotoxumab

(621− 206)/773 = 54% for placebo

• Proportions rCDI using patients with cure

129/625 = 21% for bezlotoxumab

119/568 = 21% for actoxumab / bezlotoxumab

206/621 = 33% for placebo

• Under risk after 12 weeks

343 for bezlotoxumab

301 for actoxumab / bezlotoxumab

272 for placebo

• Treatment failure (inicial clinical cure not reached)

(781− 625)/781 = 20% for bezlotoxumab

(773− 568)/773 = 27% for actoxumab / bezlotoxumab

(773− 621)/773 = 20% for placebo

Transition rates are calculated as number of patients divided by number of patient-days

at risk. For transition 0 → 1 and 0 → 2 we take 7 + 2 days as mean duration at risk

since cure was recorded within 14 + 2 days. For transition 13 we take 12× 7− (7 + 2)

days as mean duration at risk since most recurrences occurred early after infusion. For

transition 14 we take 10× 7 − (7 + 2) days as mean duration at risk. It results in the

following rates:
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• Bezlotoxumab

λ01 = 625/(781× (7 + 2)) = 0.089

λ02 = (781− 625)/(781× (7 + 2)) = 0.022

λ13 = (625− 129− 343)/(625× (12× 7− (7 + 2))) = 0.003

λ14 = 129/(625× (10× 7− (7 + 2))) = 0.003

• Actoxumab / bezlotoxumab

λ01 = 568/(773× (7 + 2)) = 0.082

λ02 = (773− 568)/(773× (7 + 2)) = 0.029

λ13 = (568− 119− 301)/(568× (12× 7− (7 + 2))) = 0.003

λ14 = 119/(568× (10× 7− (7 + 2))) = 0.003

• Placebo

λ01 = 621/(773× (7 + 2)) = 0.089

λ02 = (773− 621)/(773× (7 + 2)) = 0.021

λ13 = (621− 206− 272)/(621× (12× 7− (7 + 2))) = 0.003

λ14 = 206/(621× (10× 7− (7 + 2))) = 0.005
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Figure 6.7: Transition probabilities derived from the Aalen-Johansen estimator for the

comparison of treatment groups in the MODIFY I and II trial. Left: probability to

be cured and free of recurrent Clostridium difficile infection (rCDI). Right: estimated

difference of probabilities with 95% two-sided simultaneous confidence bands (CB).
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6.2.3 Results

Transition probability and simultaneous confidence bands

The left part of Figure 6.7 illustrates the probabilities of being cured, alive, and free of

rCDI over the time interval of interest until week 12, that is the estimated transition

probability P̂01(0, t) in Figure 6.6. The right part illustrates the difference in proba-

bilities together with the 95% one-sided simultaneous confidence band (dashed black

line). Comparing bezlotoxumab and placebo, the probability of being cured, alive, and

free of rCDI is significantly higher for bezlotoxumab from week 6 on. Comparing ac-

toxumab / bezlotoxumab and placebo, this probability remains higher in the placebo

group for approximately the first five weeks, significantly around week 2 and 3. Bezlo-

toxumab performs considerably better than actoxumab / bezlotoxumab for the entire

time period, significantly around week 1 until 4.

Pseudo-value regression

For the pseudo-value regression, we investigated the effect over the whole time frame

including ten times equally distributed (day sk = {4, 14, 24, . . . , 84}) and at week 12

(day sk = 84). For the comparison of bezlotoxumab with placebo, this technique

yields a significant difference CRR = 1.12 [1.05, 1.21] (whole time frame) and CRR =

1.24 [1.12, 1.38] (week 12), also for the comparison of bezlotoxumab with actoxumab /

bezlotoxumab, CRR = 1.13 [1.05, 1.22] (whole time frame) and CRR = 1.14 [1.03, 1.25]

(week 12). For the comparison of actoxumab / bezlotoxumab with placebo, it results

in CRR = 0.99 [0.92, 1.07] (whole time frame) and CRR = 1.09 [0.98, 1.22] (week 12).
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General and restricted log-rank-based test

For the comparison of bezlotoxumab with placebo, the general log-rank-based test gives

a significant difference (p < 0.01) and the restricted log-rank-based test as well (p <

0.01), also for the comparison of bezlotoxumab with actoxumab / bezlotoxumab. For

the comparison of actoxumab / bezlotoxumab with placebo, the general log-rank-based

test gives a significant difference (p < 0.01) but the restricted log-rank-based not (p =

0.66). This is due to the fact that the probability curves of interest cross, see Figure

6.7 (middle left).

6.2.4 Considerations about a suitable estimand for rCDI prevention

We noticed that the proportions of patients experiencing the primary endpoint rCDI,

given in, e.g., Figure 1 in [96], do not coincide with the cumulative risk of rCDI estimated

by the Kaplan-Meier method in Figure 2 in [96]. Wilcox et al. censored patients at

the date of medication infusion who fail to achieve clinical cure. This results in a

classical competing risks bias, unfortunately still common in leading medical journals

[90, 134, 135]. Experiencing, e.g., death as competing event precludes the occurrence

of clinical cure and therefore also the occurrence of rCDI. Conditioning on the future

violates the first principle in time-to-event analysis and ignoring competing events leads

to an overestimated cumulative rCDI risk, a biased result. Here, an appropriate analysis

can only be ensured based on a multistate model as in Figure 6.6.

The impact of bezlotoxumab is thought to be solely on preventing rCDI which is

why this was the focus for the primary endpoint in [96]. Since it is not an anitibiotic

and cannot exert its pharmacologic effect in a setting where no toxin is present, it is

clinically not expected to impact the proportion of patients who attain cure of the initial

CDI. However, bezlotoxumab could have theoretically an indirect impact on mortality

as well besides the prevention of rCDI. This has to be taken into account since a possibly
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differential effect by chance on competing risks (clinical failure and / or mortality) can

potentially mask the treatment difference for reducing rCDI. For this, several marginal

and conditional probability functions are possible to examine for assessing the effect of

a treatment on the probability of requiring an rCDI.

Marginal probability functions

The probability for an rCDI among all patients is the transition probability to go from

state 0 (infusion) to state 3 (rCDI), that is

P03(t),

estimated by # rCDI
# mITT

at τ . A possibly differential effect by chance on the competing

risk transition 02 or 04 can potentially mask the treatment difference for reducing rCDI

when only the 03 transition is considered. As a consequence, one must consider all

marginal probability curves simultaneously to interpret them appropriately and to get

a complete picture. Here, P02(t) and P04(t), the probabilities for competing events

before and after cure have to be taken into account. When analysing the probability

for an rCDI among patients with cure, that is the transition probability to go from

state 1 (cure) to state 3 (rCDI),

P13(t),

estimated by # rCDI
# cure

at τ , P14(t), the probabilities for a competing event after cure has

to be taken into account.

Using these marginal probability functions, several probability curves have to be

examined for a comprehensive picture of a treatment effect, even if the focus lies on one

event type only.
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Conditional probability functions

An alternative possibility that enables to focus on the probability of one event type

without considering the incidence curve of the competing events are conditional proba-

bility functions [136]. They are restricted to a specific study population of interest and

“share the same flavour as the Kaplan-Meier function” [136]. The difference to marginal

probability functions is best illustrated with an example.

Example. Let us assume two treatment groups, T and C, 100 cured patients in each

group. At the end of follow-up, 20 have an rCDI in treatment group T and 40 experi-

ence a competing event. In group C also 20 patients have an rCDI but the treatment

was more toxic such that 60 out of 100 experience a competing event as, e.g., death.

The probability of a recurrent infection among cured patients at the end of follow-up,

P̂13(τ), is 20
100

= 20% for both treatment groups, although the occurrence of more com-

peting events may have prevented the event rCDI from occuring in group C. Thus, the

probability of a competing event P̂14(t) has to be considered, where P̂14(τ) = 40
100

= 40%

for group T and P̂14(τ) = 60
100

= 60% for group C. Alternatively, the probability of a

recurrent infection among cured patients conditional to the fact that they have not

experienced a competing event after cure is 20
100−40

= 20
60

= 33% for treatment T and

20
100−60

= 20
40

= 50% for treatment C, such that the actual treatment difference appears.

This function is also nicely described by Pepe and Mori [136].

In our model, when considering only cured patients, the probability of a recurrent in-

fection among cured patients conditional to the fact that they have not experienced a

competing event after cure, we have

P13(t)

1− P14(t)
=

P13(t)

P11(t) + P13(t)
,
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estimated by # rCDI
# cure and no comp. event

at τ . When considering all patients and the proba-

bility of a recurrent infection conditional to the fact that they have not experienced a

competing event before is of interest, we have

P03(t)

1− P02(t)− P04(t)
=

P03(t)

P00(t) + P01(t) + P03(t)
,

estimated by # rCDI
# cure and no comp. event

at τ . The only difference is that the risk set of

patients in state 1 develops over time, whereas the aforementioned probability treats

these patients as left-truncated. The probability of a recurrent infection conditional

to the fact that patients are cured and have not experienced a competing event before

gives

P03(t)

1− P00(t)− P02(t)− P04(t)
=

P03(t)

P01(t) + P03(t)
,

estimated by # rCDI
# cure and no comp. event

at τ . Again, the difference is how to handle the

risk set. In the latter two probabilities, P00(t) becomes zero over time and in the first

conditional probability, P00(t) is assumed to be zero from time zero. It is also possible to

condition only on being cured, as in Schumacher et al. [137], such that the probability

for an rCDI conditional to the fact that for experiencing a recurrent infection a patient

has to be cured first, gives

P03(t)

1− P00(t)− P02(t)
=

P03(t)

P01(t) + P03(t) + P04(t)
,

estimated by # rCDI
# cure

at τ . An overview of all probability functions considered is given

in Table 6.1 and for illustration purposes, the aforementioned transition probabilities

are estimated and plotted in Figure 6.8 using the simulated data of the bezlotoxumab

study group.

We recommend to focus on the probability of a recurrent infection conditional to the fact

that patients are cured and have not experienced a competing event before, P03(t)
P01(t)+P03(t)

,
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since this may answer the initial research question best. Moreover, when no effect

is present on the competing events, there may be only negligible upto no differences

between the estimated estimands when comparing treatments.

6.2.5 Discussion

Most clinical trials for new treatments of CDI have used inter alia clinical cure as the

primary endpoint [22] that is also recommended by the European Medicines Agency

[20]. Moreover, it is a highly relevant interest from the patients’ perspective how an

active treatment performs over the complete cure process. When the focus lies on rCDI

prevention, we strongly recommend the time-dependent endpoint “clinical cure, free of

rCDI, and alive over time” as key secondary endpoint of interest that complements the

use of the endpoint “sustained cure” [3]. In this example, our analysis indicates the

possibility that although both active treatment groups decreased the rCDI risk, the

probability of being cured, alive, and free of rCDI remains higher in the placebo group

compared to actoxumab / bezlotoxumab for approximately the first five weeks.

Further, in the presence of competing events, Kaplan-Meier risk estimates as used

in Wilcox et al. [96] are biased. Here, an appropriate analysis can only be ensured

based on a multistate model where several possible estimands are conceivable to assess

rCDI prevention.



84 Chapter 6: APPLICATION

Probability function Interpretation Reference population Proportions

at τ

Marginal probability functions

P03(t) Pr(rCDI) all patients # rCDI
# mITT

P13(t) Pr(rCDI) patients with cure # rCDI
# cure

Conditional probability functions

P13(t)
1−P14(t)

Pr(rCDI | no comp. event) patients with cure # rCDI
# cure and no comp. event

=
P13(t)

P11(t)+P13(t)

P03(t)
1−P02(t)−P04(t)

Pr(rCDI | no comp. event) all patients # rCDI
# cure and no comp. event

=
P03(t)

P00(t)+P01(t)+P03(t)

P03(t)
1−P00(t)−P02(t)−P04(t)

Pr(rCDI | cure and all patients # rCDI
# cure and no comp. event

=
P03(t)

P01(t)+P03(t)
no comp. event)

P03(t)
1−P00(t)−P02(t)

Pr(rCDI | cure) all patients # rCDI
# cure

=
P03(t)

P01(t)+P03(t)+P04(t)

Table 6.1: Marginal and conditional probability functions suitable as an estimand to

assess rCDI prevention, their interpretation, the study population that is used for cal-

culation (reference population), and the values at end of follow-up (τ).
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Figure 6.8: Estimated marginal and conditional probability functions for the bezlotox-

umab study group to assess rCDI prevention. The lower figure shows an extended time

frame to illustrate the values at end of follow-up.
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6.3 OUTCOMEREA study

As mentioned in the introduction, VAP is the most common nosocomial infection

amongst ventilated patients, the majority caused by the organism Pseudomonas aerugi-

nosa [7]. Patients with VAP require immediate treatment but pathogens are frequently

resistant to many antimicrobial agents [138]. A treatment is classified as adequate if one

or more antibiotics initiated for VAP were active against the causative Pseudomonas

aeruginosa on the basis of the antibiotic susceptibility profile of the strain [139]. How-

ever, due to limited diagnostic test opportunities, the adequacy of antimicrobial therapy

can only be determined after 24 hours subsequent to the begin of treatment resulting in

a considerable amount of patients that receive inadequate initial therapy. In addition,

the complete absence of antimicrobial treatment is generally considered as inadequate

antimicrobial treatment [140].

Impact of inadequate treatment

The extent of negative impact that inadequate immediate treatment could have is dis-

puted. Existing research has not provided consistent evidence on whether inadequate

treatment is associated, e.g., with increased mortality. A broad systematic review of

general bacteraemic patients has generated conflicting findings [141]. The general as-

sumption that infections caused by antibiotic-resistant bacteria are associated with an

increased mortality rate is based on the possibility that due to limited diagnostic test

opportunities adequate treatment for such infections might be initiated later than for

infections caused by antibiotic-susceptible bacteria [140].

On the one hand, concerning patients suffering from a VAP, some studies have found

out that delayed or inadequate treatment is associated with an increased mortality

[142, 143, 144, 145, 146], others found an effect only in the subgroup of patients with

a high disease severity [147]. Bloos et al. [148, 149] showed that an early recognition
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followed by immediate initiation of adequate therapy is important to improve survival in

septic patients, which is among the most common causes of death in hospital. Beneath

patients with gram-negative bacteremia, appropriate antimicrobial therapy has been

shown to reduce mortality [150] and, when initiated early, to have a favorable effect

on outcome in critically ill patients with bacteremia or other serious infections [151,

152, 153, 154, 155]. Kang et al. [156] showed that inadequate immediate treatment is

associated with an adverse outcome in antibiotic-resistant gram-negative bacteremia,

particularly in patients with a high-risk source of bacteremia.

On the other hand, several reports have noted that inadequate immediate treatment

did not result in a considerable difference in the outcomes of patients with severe in-

fections [157, 158, 159]. No effect of inadequate treatment on mortality and discharge

was found in context withb ICU-acquired Enterobacteriaceae bacteraemia [160]. Some

studies found that initial inadequate treatment is not associated with treatment failure

[139, 147, 161].

We will consider VAP patients and study the association of adequate treatment in

comparison to inadequate treatment on being cured and alive making use of a multi-

state model. Here, we will define cure as successful extubation or discharge alive from

hospital. Such a cure-death model was already proposed to gain a better understand-

ing of how a new treatment influences the time-dynamic cure and death process in a

randomised clinical trial setting [1, 12] and can be easily applied to the observational

OUTCOMEREA study, using the multistate model in Figure 6.9. The outcome of

interest can be expressed as

P01(0, t) + P03(0, t) = Pr(X(t) = 1 | X(0) = 0) + Pr(X(t) = 3 | X(0) = 0),

the probability of being extubated alive (but still in hospital) plus the probability of

being discharged from hospital. It is a summary measure where all of the four relevant
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transition hazards out of Figure 6.9 have influence, directly or indirectly.

Randomised controlled trials may not be feasible due to ethical considerations and thus,

methods to correct for possible confounders have to be applied. The propensity score

(PS) as multivariable scoring system is a suitable method to collapse several predictors

for adequate treatment into a single value. Here, the PS is defined as the conditional

probability of receiving adequate treatment given patients’ covariates and is used to

balance the distribution of possible confounders between patients with adequate and

inadequate treatment. Several PS methods will be applied.

6.3.1 The study

We examined patients of the French prospective observational OUTCOMEREA re-

search data base, where data was collected between 1997 and 2014 from 23 ICUs.

Patients with VAP due to Pseudomonas aeruginosa were included who had received at

least 48 hours of mechanical ventilation. A total of 465 patients were included where

308 received immediate adequate treatment and 157 inadequate treatment. Patients

in both treatment groups were similar in baseline characteristics, ICU length of stay,

day-30, and in-hospital mortality.

6.3.2 Propensity score

RCTs provide the highest level of evidence when estimating the effects of interventions

on outcomes since a random treatment allocation ensures that treatment status is not

confounded with patients’ baseline characteristics. In observational (non-randomised)

trials, treatment allocation (= exposure) is often influenced by patients’ characteristics

and often, as a consequence, baseline characteristics in treatment groups differ system-

atically.
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Figure 6.9: The cure-death model for comparing adequate and inadequate treatment

with an initial VAP state, an extubation state, a death in hospital / reintubation state,

and a discharge from hospital state. The direction of arrows illustrates the potential

transition between the states determined by a transition hazard λ01(t), λ02(t), λ12(t),

or λ13(t).

The concept

The propensity score (PS) aims to balance covariate distributions such that conditional

on the PS, the distribution of observed baseline covariates will be similar in treatment

groups [162, 163]. It is the conditional probability of receiving a certain treatment given

a set of patients’ pre-treatment covariates.

In a first step, the PS is estimated from the existing data, for example in a logistic

regression model. The question which covariates to include to estimate the PS is often

subject of debate. Some researchers suggest to include covariates associated with treat-

ment, others advocate to focus on covariates associated with outcome, and some favour

covariates associated with both treatment and outcome. Brookart et al. [164], e.g.,

suggest that covariates unrelated to the treatment but related to the outcome should

always be included in a PS model. Austin et al. [165] showed that including covari-
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ates related to the treatment but unrelated to the outcome does not improve variable

balance and therefore should not be included in the PS model. Furthermore, they rec-

ommend to include all measured confounders (covariates associated with treatment and

outcome) since, otherwise, this can lead to biased estimation of the treatment effect.

But, in the same vein, they alert of using such a model as panacea for unmeasured

confounders. Austin et al. [166] advice that the choice of covariates should be based on

subject-matter expertise rather than formal statistical hypothesis testing in the study

sample. Including the ones about which one would be concerned if baseline imbalance

existed is a good choice [167, 166].

In a second step, the estimation of the treatment effect of interest follows with the

aid of the PS. In doing so, four methods are available: PS matching, inverse probability

of treatment weighting (IPTW), regression adjustment for the PS, or stratification

according to the PS:

• PS matching: Every treated patient is assigned an untreated patient (1:1 match-

ing) or several (1:n matching) with the same or a similar PS. The maximum

permitted difference between matched subjects, also called the “caliper”, is cho-

sen as a width equal to 0.2 of the standard deviation of the logit of the propensity

score, as this caliper has been shown to be optimal in a range of settings [168].

In the matched collective, the therapy effect is estimated taken into account of

the matching. In practice, a univariable Cox model, e.g., is fitted, allowing the

baseline hazard function to vary across matched sets [169].

• IPTW: Every patient receives as weight the reciprocal of treatment probability

that belongs to its actual treatment status. A patient in the treatment group

receives the weight 1
PS

, a patient in the control group weight 1
1−PS . So, a treated

patient with a low PS (for treatment) gets a high weight because his baseline
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characteristics are similar of those in the untreated group and the other way

round.

• Regression adjustment for the PS: A conventional regression model is used with

the outcome of interest as dependent variable and the treatment allocation as

well as the PS as independent variables. The influence of treatment on outcome

is adjusted for the PS and therefore as well for all covariates used to estimate the

PS.

• Stratification according to the PS: This is a coarsened version of PS matching.

Here, the entire sample is partitioned in equal parts (for example quintiles) with

respect to the estimated PS. In each of these parts the treatment effect is estimated

and the overall effect is then summarised using meta-analytical methods.

Each of these methods has its advantages and disadvantages, PS matching and IPTW

are considered to be the preferred procedures [169]. However, it has to be beared in

mind that PS methods can only adjust for known and actually measured patients’

characteristics and are not able to replace RCTs.

Variables to include

We fit a logistic regression model to predict adequate treatment assignment as a function

of baseline covariates and had a look at the CSHRs for different transitions 0→ 1, 0→

2, 1 → 2, and 1 → 3 adjusted for these covariates. We select variables based on their

association with treatment and outcome or only outcome using an inclusion criterion of

p ≤ 0.157 for at least one of the CSHRs or treatment from the univariable analysis [170],

stratified by center. This reference value corresponds to the well-established Akaike

information criterion for model selection [171]. It results in including the following

variables into the PS model:
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• Sex

• Age

• Resistant VAP

• SOFA score

• Multiple antibiotics

• Smoking

• Alcohol abuse

• Substance abuse

• Dialysis

• Sepsis

• Days from admission to VAP

• Days from mechanical ventilation to VAP

Subject-matter experts advise to include variables like “resistant VAP”, “multiple an-

tibiotics”, and “SOFA score” that are among the variables above. The PS distribution

can be seen in Figure 6.10.

An important issue is to check whether baseline characteristics differ substantially be-

tween adequately and inadequately treated patients in the propensity score matched

sample in comparison to in the original sample. In Table 6.2, we examined these vari-

ables using standardised differences. Acceptable balance has been reached as systematic

differences between adequately and inadequately treated subjects in the original sam-

ple concerning prognostically important variables (as, e.g., sex, SOFA score, multiple

antibiotics) have been substantially reduced or eliminated in the matched sample.
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Figure 6.10: The propensity score distribution for adequate and inadequate treatment.

6.3.3 Results

First of all, transition frequencies for adequately and inadequately treated patients can

be found in Table 6.3. The data visualisation in Figure 6.12 provides an illustration of

the time course of events for adequate and inadequate treatment.

The Markov assumption

To check if the Markov assumption is fulfilled, we studied the influence of the time to

cure, the 0→ 1 transition, on the 1→ 2 reintubation / mortality transition and on the

1→ 3 discharge transition by including it as a time-dependent variable in a Cox model

for the 1 → 2 and 1 → 3 hazard, respectively. The model for the discharge transition

reported a non-significant coefficient (p = 0.65) for the time to cure. Although it gives

a significant coefficient (p = 0.02) regarding the reintubation / mortality transition, a



6.3: OUTCOMEREA study 95

hazard ratio of 0.98 is very close to 1 and thus, we consider the Markov assumption

to analyse these data [172]. Moreover, if censoring is independent, the Nelson-Aalen

estimator is still an appropriate estimator for the cause-specific cumulative hazards and

the Aalen-Johansen estimator for the state occupation probabilities is consistent even

in the absence of the Markov property [173, 174]. The Aalen-Johansen estimator in

general is less sensitive to violations of the Markov assumption as originally thought

[175, 176]. We further examined the alternative Kaplan-Meier-type estimator for the

probability of being extubated alive (but still in hospital) not relying on the Markov

assumption that was introduced in Section 3.2. Figure 6.11 shows that the Aalen-

Johansen estimator is similar to the alternative Kaplan-Meier-type estimator. Because

information about the 3 → 2 transition is incomplete (incomplete mortality follow-up

for death after discharge), it is not possible to apply this alternative estimator for the

probability of being discharged from hospital.

Cause-specific hazards and Cox regression

Univariable Cox regression (all regression results are given in Table 6.4 and Table 6.5)

showed an increased risk of 1.65 [0.95, 2.86] in the transition from cure to death (1→

2) for patients with adequate treatment, with albeit weak evidence against the null

hypothesis (p = 0.076). The hazard ratio decreased with the adjustment for covariates

in a multivariable regression model, also for the 0→ 2 transition. A slight increase can

be seen in the 01 transition by adjusting for covariates in the multivariable regression.

With the application of PS methods, the PS matching and PS IPTW yields a significant

result for this 1 → 2 transition. A difference in the 1 → 2 transition can also be seen

having a look at the cumulative cause-specific hazards in Figure 6.13, here also for the

transition from cure to discharge (1 → 3). For all other transitions, no evidence was

found for a difference between adequate and inadequate treatment.
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Figure 6.11: Aalen-Johansen estimator and alternative Kaplan-Meier-type estimator

for the probability of being extubated alive (but still in hospital) including all patients

of the OUTCOMEREA study.

Transition probability and simultaneous confidence bands

No evidence was found for a difference between adequate and inadequate treatment,

neither in the 01 transition and 03 transition in Figure 6.14, nor in the sum of these

transitions, using simultaneous confidence bands for the difference in Figure 6.15.

Pseudo-value regression

For the transition probability of interest, we investigated the effect over the whole time

frame using ten times equally distributed (sk = {1, 11, 21, . . . , 61}), and at day 20,

40, and 60 (sk = 20, 40, 60), in a univariable, multivariable, and several PS adjusted

analyses (see Table 6.4 and Table 6.5). Again, no evidence was found for a difference

between adequate and inadequate treatment.
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General and restricted log-rank-based test

The general log-rank-based test gives a non-significant difference between adequate and

inadequate treatment (p = 0.65), the restricted log-rank-based test as well (p = 0.63).

6.3.4 Post hoc analyses and discussion

No evidence was found for an unfavourable effect of inadequate treatment on being

extubated or discharged alive. There may be a marginal effect on the transition from

extubation to reintubation / death, to the disadvantage of adequate treatment, that

has to be given further consideration. These counter-intuitive results of a comparable

performance of immediately adequate and inadequate treatment encouraged to perform

subsequent post hoc analyses to be able to explain the surprising equivalent effect of

inadequate treatment.

For this, in order to have a deeper look into which covariates have an influence on

treatment, we used a classification and regression tree (CART) procedure. CART is one

popular way to form trees from data, where the aim is to divide patients into subgroups

defined by patients’ characteristics in terms of their covariate values [177, 178]. The

concept of a binary tree-structure is sometimes called “recursive partitioning” and was

first proposed by Morgan and Sonquist [179]. The split yielding the maximal test

statistic, which represents the greatest possible separation of the patients with respect

to the outcome variable, is performed. The subgroups should be disparate and internally

homogeneous.

We split the whole sample according to the variable with the highest impact on

treatment, that is multiple antibiotics. One further split is done according to diabetes

in the subset of patients with multiple antibiotics. As can be seen in Figure 6.16, in the

smaller group with no multiple antibiotics, the majority, 74% of patients, are classified

into the inadequate group, although in total, only 34% belong to the inadequate group.
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Also, these patients, with a mean SOFA score of 4.9 (median 4), are healthier than the

larger group with multiple antibiotics, with a mean SOFA score of 6.5 (median 6).

In an ICU setting, critically ill patients have to be treated immediately. For patients

that are not critically ill, doctors often wait a couple of days before a treatment is given.

In fact, during this phase, these patients are allocated to the inadequate treatment

group. Thus, 62 out of 157 patients (39%) with no multiple antibiotics and a lower

SOFA score are present in the inadequate treatment group. In other words, almost

half of the patients in the inadequate treatment group are patients with a considerably

better health condition. This imbalance could be a possible explanation for the fact

that no evidence was found for an effect of adequate and inadequate treatment on

being extubated or discharged alive. As a consequence, reflections should take place on

whether the definition of adequate treatment or rather the assignment to the adequate

treatment group is appropriate or whether a third category of “delayed / no treatment”

would be reasonable.

Total Adequate Inadequate

0→ 1 303 201 102

0→ 2 162 107 55

1→ 2 66 49 17

1→ 3 237 152 85

Table 6.3: Comparison of transition frequencies between adequately and inadequately

treated patients.
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Figure 6.12: Data visualisation for adequate and inadequate treatment. On the x-axis,

time from first ventilator-associated pneumonia (VAP) is given. Being extubated is

displayed in the form of light grey lines after dark grey lines describing intubation. The

black filled dots represent death cases, patients reintubated after cure are marked with

a red dot. Patients discharged alive are marked with green dots.
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Figure 6.13: Cumulative hazards given by the Nelson-Aalen estimator for the OUT-

COMEREA data. Transition to extubation (0→ 1), to death (0→ 2), from extubation

to reintubation / death (1 → 2), and from extubation to discharge (1 → 3) are dis-

played.
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UNI MULTI

Regression type exp(coef) exp(coef)

CSHR

0→ 1 1.04 [0.82, 1.32] 1.12 [0.85, 1.47]

0→ 2 1.02 [0.74, 1.42] 0.94 [0.65, 1.35]

1→ 2 1.65 [0.95, 2.86] 1.49 [0.83, 2.67]

1→ 3 0.98 [0.75, 1.28] 0.93 [0.69, 1.26]

CRR

whole time frame 1.00 [0.82 1.23] 0.96 [0.80 1.17]

around t = 20 1.08 [0.85 1.38] 1.00 [0.79 1.26]

around t = 40 0.98 [0.80 1.19] 0.94 [0.77 1.14]

around t = 60 0.95 [0.79 1.15] 0.91 [0.76 1.09]

Table 6.4: Regression results without propensity score methods. The respective effect

measure is given with 95% confidence interval. CSHR = Cause-specific hazard ratio,

CRR = Cure risk ratio.
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Figure 6.14: Transition probabilities derived from the Aalen-Johansen estimator for the

OUTCOMEREA data. Left: probability to be extubated (stay extubated but still in

hospital, that is the state occupation probability for state 1). Right: probability to be

discharged alive (that is the state occupation probability for state 3).



6.3: OUTCOMEREA study 103

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

0−>1 + 0−>3

Time (days after first VAP)

P
ro

ba
bi

lit
y 

to
 b

e 
ex

tu
ba

te
d 

or
 d

is
ch

ar
ge

d 
al

iv
e

Adequate
Inadequate

0 20 40 60 80

−0.4

−0.2

0.0

0.2

0.4

Difference

Time (days after first VAP)

P
ro

ba
bi

lit
y 

to
 b

e 
ex

tu
ba

te
d 

or
 d

is
ch

ar
ge

d 
al

iv
e 

(D
iff

er
en

ce
)

Difference
95% (linear) CB, q=0.120

Figure 6.15: Transition probabilities derived from the Aalen-Johansen estimator for

the OUTCOMEREA data. Left: probability to be extubated and / or discharged alive.

Right: estimated difference of probabilities with 95% two-sided simultaneous confidence

band (CB) and corresponding boundary value q.
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PS matching PS IPTW PS reg adj PS strat

Regression type exp(coef) exp(coef) exp(coef) exp(coef)

CSHR

0→ 1 1.04 [0.78, 1.39] 1.01 [0.86, 1.18] 1.02 [0.79, 1.33] 1.04 [0.81, 1.35]

0→ 2 0.92 [0.63, 1.35] 1.01 [0.80, 1.26] 0.97 [0.69, 1.39] 0.93 [0.65, 1.34]

1→ 2 2.26 [1.02, 5.01] 1.55 [1.09, 2.22] 1.56 [0.87, 2.80] 1.24 [0.68, 2.29]

1→ 3 1.30 [0.89, 1.89] 0.89 [0.75, 1.07] 0.91 [0.68, 1.23] 0.88 [0.66, 1.18]

CRR

whole time frame 1.00 [0.82, 1.23] 0.99 [0.80, 1.23] 1.00 [0.81, 1.25] 1.47 [0.48, 4.54]

around t = 20 1.08 [0.84 1.37] 1.04 [0.80, 1.35] 1.06 [0.82, 1.38] 0.98 [0.34, 2.84]

around t = 40 0.98 [0.80
”

1.19] 0.95 [0.77, 1.19] 0.97 [0.78, 1.20] 0.76 [0.32, 1.85]

around t = 60 0.95 [0.79, 1.15] 0.92 [0.76, 1.13] 0.94 [0.77, 1.15] 0.76 [0.36, 1.64]

Table 6.5: Regression results using different propensity score adjustments. The re-

spective effect measure is given with 95% confidence interval. CSHR = Cause-specific

hazard ratio, CRR = Cure risk ratio.
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Whole sample

465

308 adequate (66%)

157 inadequate (34%)

χ2 = 6.5

Multiple antibiotics

370

275 adequate (74%)

95 inadequate (26%)

χ2 = 2.4

Diabetes

46

41 adequate (89%)

5 inadequate (11%)

No diabetes

324

234 adequate (72%)

90 inadequate (28%)

No multiple antibiotics

95

33 adequate (34%)

62 inadequate (66%)

Figure 6.16: Interaction tree for the OUTCOMEREA data presenting covariates with

an impact on treatment.
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7 DISCUSSION AND CONCLUSION

In trials treating high-risk patients with severe infectious diseases, a proper analysis of

the patient-relevant endpoint cure requires accounting for the time-dependent nature of

the cure status. Patients are usually interested in how long it will take to get better and

when they might get sick again [33]. For this, we presented a comprehensive multistate

Markov model to examine the impact of a treatment on cure and death over time. This

“cure-death model” is usually known as “illness-death model”. It takes account of the

time-dependency of each event by considering transitions between certain states. The

basic version of this model contains three relevant transitions that can be analysed

separately and with the help of a patient-relevant summary measure, the probability

of being cured and alive function. One advantage of this summary measure is the

more direct interpretation of probabilities in comparison to intensities. While transition

intensities give a local description of the model dynamics, transition probabilities give

a global description of what has accumulated over time. This function can be highly

valuable when analysing data of randomised clinical trials, as in Section 6.1 and 6.2 but

is also interesting at the planning stage. Furthermore, it can be applied in infection

control and hospital epidemiology as in Section 6.3.

The Markov assumption

The applied cure-death multistate model requires to be time-inhomogeneous Markov.

In the application chapter in Section 6.1 and 6.3 we could show that the Markov as-

sumption was appropriate to analyse the data. Inter alia, we applied an alternative

estimator for the PCA function not relying on the Markov assumption [107, 114]. It

is based on a decomposition of the probability of interest into components that can be
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estimated by Kaplan-Meier-type estimators, respectively.

The Markov assumption is also used, e.g., in Temkin [51] where the risk for a 1→ 2

transition could be measured solely in terms of time for the 0 → 1 transition, that is

λ12(t̃, t) = λ12(t). However, there are several possible models characterised by different

assumptions for transition hazards. In Lagakos [180, 181] it is assumed that hazards

are constant over time. A semi-Markov model is used in Lagakos et al. [182], Hsieh et

al. [87], and Voelkel [183] where the 1→ 2 transition depends on the duration in state

1, that is λ12(t̃, t) = λ12(t− t̃). When time is measured from treatment, as in the time-

inhomogeneous Markov model, patients are not at risk for death after cure until they

are cured. If time is measured from cure, as in a semi-Markov model, a different time

scale is used. All cured patients are collected in state 1 and simultaneously exposed to

the risk of death.

Generally, one can test which assumption is more reasonable for a given data set.

In some settings, the Markov assumption might be inappropriate / violated since it

ignores the disease history. Then, estimation of general transition probabilities becomes

problematic. For this, alternative estimators not relying on the Markov assumption were

already proposed [184, 176, 185, 121, 186]. Pepe et al. [57, 58] proposed estimating

the probability of an intermediate condition as prevalence functions in a non-Markov

model, partly based on the estimator proposed by Tsai et al. [107, 114]. In a recently

published work, Azarang et al. [122] addressed the problem of estimating the transition

probabilities in a possibly non-Markov illness-death model in the presence of covariates

using a binominal approach, analogous to that of Scheike et al. [121] for competing

risks.

Moreover, under the independent censoring assumption, the Aalen-Johansen esti-

mator for the state occupation probabilities as the probability to be cured and alive is

consistent even if the Markov property is violated [176, 175, 174, 173].
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Strengths and limilations

Having the outcome of interest, to get cured and stay alive over time, estimated by

the Aalen-Johansen estimator of the probability to be in state 1, we examined several

possibilities to assess a treatment effect in Section 4 and compared them in a simulation

study in Section 5. Besides simple methods comparing risk differences with proportions

of patients cured and alive and a log-rank-based test, we introduced an advanced tech-

nique to construct time-simultaneous confidence bands (when the absolute treatment

effect is of interest) and an innovative regression technique to directly make inference

on probability functions in a multistate setting (when the relative treatment effect is of

interest).

Whereas a test simply investigates the question if the treatments are different at

all, the confidence band for the difference in probability curves tells us where they are

different or non-inferior and by how much. Pseudo-value regression can also be used to

examine a specific time interval of interest. Moreover, only the pseudo-value approach

accommodates the inclusion of additional explanatory variables in the analysis, that

may be necessary not only within observational studies as in Section 6.3. The model

could also adjust for the duration of antibiotic treatment, e.g., as a prolonged duration

of antibiotic treatment is associated with the development of antimicrobial resistance

[187].

However, both the pseudo-value regression as well as the wild bootstrap resampling

are computationally cumbersome for large samples. Also, as mentioned in Section

4.3, for pseudo-value regression, a restriction to some timepoints has to be made. An

approach for including all event times was presented by Liu et al. [53] in the setting

with current leukemia-free survival. They proposed a score test with a closed form

expression for the two-sample situation.



110 Chapter 7: DISCUSSION AND CONCLUSION

Future work / open questions

A first aspect worth considering for future research is the timing and definition of cure.

In most studies, time of death is observed exactly unless it is right censored. However,

this is not the case for clinical or microbiological cure. Often, the observation of such

an intermediate event may only be registered at scheduled examination times, e.g.,

when the patient is seen by the general practitioner. In many trials, clinical cure is

measured when the clinical study investigator performs the TOC. In the ceftobiprole

trial, this was mostly performed within a time frame of 7 up to 14 days after the end

of treatment. Hence, strictly speaking, we do not know the exact onset time of the

intermediate condition cure, the time is therefore interval censored. More advanced

statistical methods are required to address this problem; see Sun [188] for a general

review and Commenges [189] for a more specialised review of methods for multistate

models and interval censored data. More frequent data capture would allow for an

improved analysis of well-defined cure endpoints, which is not possible adequately when

endpoints are captured at a limited number of fixed timepoints [33]. Peace [14] stated

that prospectively, it is not possible to classify a patient as cured or not during the

treatment period but retrospectively, the exact cure time, theoretically, can be located

where it occurred. Nevertheless, as timepoint of cure the timepoint of the TOC is

utilised.

Furthermore, there is no unique definition of cure available. An efficacy endpoint is

mostly based on resolution and improvement of signs and symptoms of infection at a

timepoint after completion of therapy [10], but, a systematic review of Weiss et al. [16]

shows that no agreement has been reached neither in the definition of cure nor in the

time the TOC is performed.

A second point is how to find the appropriate non-inferiority margin. In testing non-
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inferiority of novel anti-infective drugs of, e.g., the binary endpoint cure, a pre-specified

margin is used and the difference in proportions of cure cases between the test and con-

trol group are compared at a landmark time. This margin is selected to be reasonable

for a certain amount of cure cases in the control group at a fixed landmark time. Since

our method avoids pre-specifying a specific time, it therefore requires further consid-

erations on how to chose a suitable margin taken the proportion of cure cases in the

control group at every timepoint into account. Upto now, for demonstration purposes,

we used the margin applied for the “original” analyses of the RCT in Section 6.1.

A third interesting and important issue is how to obtain sample size for such an end-

point as being cured and alive over time. Generally, study planning for more specific

multistate endpoints will typically be simulation-based [41] and methods to address this

topic are currently under development. For these types of simulation studies, little in-

formation is required. As explained in Allignol et al. [190], information out of previous

studies, e.g., could already inform such simulations.

Conclusion

In conclusion, the cure-death model provides a framework that enables a simultaneous

analysis of both endpoints, cure and death. For a complete picture of the treatment

effect, we recommend to take transition probabilities into account. Hereby, a better

understanding on how a new treatment influences the time-dynamic cure process is

possible. Crowley and Breslow [82] state that the major use for such probability curves

is in graphical presentations. We show that beyond graphical advantages also meth-

ods for hypothesis testing are possible. The choice of the method to compare these

curves is a matter of clinical preference. When the relative treatment effect is inter-

esting, pseudo-value regression provides a suitable approach. However, absolute effect
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measures are often of interest. Then, looking at the absolute difference over time in

combination with confidence bands could provide a valuable statistical tool for such

analyses, especially when treatment effects vary over time. Then, such time-dynamic

patterns are important to be detected from the patients’ perspective and may have

direct impact on patient care. This may be included into future guidelines containing

appropriate recommendations to tackle severe infectious diseases.
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8 Notation and Acronyms

1 Indicator function

α Type-I-error

A, B Treatments

β Vector of regression coefficients

β̂ Vector of estimated regression coefficients

CART Classification and regression tree

CI Confidence interval

CIF Cumulative incidence function

COMBACTE Combatting Bacterial Restistance in Europe

CRR Cure risk ratio

δabs Non-inferiority margin for absolute effect measure

δrel Non-inferiority margin for relative effect measure

EMA Europeans Medicines Agency

exp Exponential function

ERL, E01, E02 E12 Expected number of events

θ̂i Pseudo observation

f(t) Density function

F (t) Distribution function

FDA Food and Drug Administration

g Link function

GEE Generalised estimating equation

H0, H1 Null-hypothesis and alternative hypothesis

HAP Hospital-acquired pneumonia
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HR Hazard ratio

i ∈ {1, . . . , n} Individual

I Identity matrix

ICU Intensive care unit

log Natural logarithm

λlj(t) Transition hazard

Λlj(t) Cumulative transition hazard

Λ̂lj(t) Nelson-Aalen estimator of the cumulative transition hazard

Λ(t) Matrix of cumulative transition hazard

Λ̂(t) Matrix of Nelson-Aalen estimates

λ0(t) Baseline hazard

λ(t | Zi) Conditional hazard, given covariate vector Zi

M(t) Martingale

n, nA, nB Number of individuals, treatment-specific

N(t) Counting process

ORL, O01, O02 O12 Observed number of events

IA, IB Proportions in treatment group A and B

PCA Probability of being cured and alive

PBRF Probability of being in response function

Pr(·) Probability

Plj(t) Transition probability

P̂lj(t) Aalen-Johansen estimator of the transition probability

P(t) Matrix of transition probabilities

P̂(t) Matrix of Aalen-Johansen estimates

RCT Randomised controlled trial

S State space
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S(t) Survival function

SE Standard error

SHR Subdistribution hazard ratio

s, t Timepoints

T , Ti Event time, event time for patient i

TOC “Test-of-cure” visit

τ End of follow-up

Ulj Gaussian process

U Matrix of Gaussian processes

U(β) Score function

V , VRL, V01, V02 V12 Variances

VAP Ventilator-associated pneumonia

Wi Working covariance matrix

Y (t) Risk set process

(X(t), t ∈ [0,∞)) Stochastic process with finite state space

z1−α
2

1− α
2

quantile of the standard normal distribution

Zi Covariate vector for patient i

P Product integral
d−→ Convergence in distribution

# Number / amount
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9 Software

All analyses done in this dissertation were performed using the open-source software R

[191], with the help of several R packages available on CRAN (http://cran.r-project.org/).

For the Cox proportional hazard model and all related analyses, the R package sur-

vival [192] was applied. We used the R package mvna [193] and etm [194] for estimation

of cumulative hazards and transition probabilities, respectively. For estimation of the

regression coefficients in a generalised estimation equation, we used R package geepack

[195]. We worked with the R package nonrandom [196] for estimation of the propensity

score. For data preparation, the R packages dplyr [197] and tidyr [198] were employed;

for plots, the R package ggplot2 [199] was sometimes used.
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inferiority in two multiple primary endpoints and superiority in at least one of

them. Biometrical Journal, 48:916–933, 2006.

[28] DL Price, DB Rubin, and T Valappil. Antimicrobial products: Statistical chal-

lenges and opportunities. Statistics in Biopharmaceutical Research, 7:325–330,

2015.

[29] Infectious Diseases Society of America. White paper: Recommendations on the

conduct of superiority and organism-specific clinical trials of antibacterial agents

for the treatment of infections caused by drug-resistant bacterial pathogens. Clin-

ical Infectious Diseases, 55:1031–1146, 2012.

[30] J Pogue, PJ Devereaux, L Thabane, and S Yusuf. Designing and analyzing clinical

trials with composite outcomes: Consideration of possible treatment differences

between the individual outcomes. PloS one, 7:e34785, 2012.

[31] SJ Pocock, CA Ariti, TJ Collier, and D Wang. The win ratio: A new approach to

the analysis of composite endpoints in clinical trials based on clinical priorities.

European Heart Journal, 33:176–182, 2012.



124

[32] SR Evans, D Rubin, D Follmann, G Pennello, WC Huskins, JH Powers, D Schoen-

feld, C Chuang-Stein, SE Cosgrove, VG Fowler, et al. Desirability of outcome

ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR).

Clinical Infectious Diseases, 61:800–806, 2015.

[33] JH Powers, K Howard, T Saretsky, S Clifford, S Hoffmann, L Llorens, and G Tal-

bot. Patient-reported outcome assessments as endpoints in studies in infectious

diseases. Clinical Infectious Diseases, 63:S52–S56, 2016.

[34] P Doshi. Speeding new antibiotics to market: A fake fix? British Medical Journal,

350:h1453, 2015.

[35] H Putter, M Fiocco, and RB Geskus. Tutorial in biostatistics: Competing risks

and multi-state models. Statistics in Medicine, 26:2389–2430, 2007.

[36] OO Aalen, Ø Borgan, and H Gjessing. Survival and event history analysis: A

process point of view. Springer, 2008.

[37] EL Kaplan and P Meier. Nonparametric estimation from incomplete observations.

Journal of the American Statistical Association, 53:457–481, 1958.

[38] M Wolkewitz, M von Cube, and M Schumacher. Multistate modeling to analyze

nosocomial infection data: an introduction and demonstration. Infection Control

& Hospital Epidemiology, 2017.

[39] M von Cube, M Schumacher, and M Wolkewitz. Basic parametric analysis for a

multi-state model in hospital epidemiology. BMC Medical Research Methodology,

17:111, 2017.



125

[40] M Wolkewitz, BS Cooper, MJM Bonten, AG Barnett, and M Schumacher. Inter-

preting and comparing risks in the presence of competing events. British Medical

Journal, 349:g5060, 2014.

[41] J Beyersmann, A Allignol, and M Schumacher. Competing risks and multistate

models with R. Springer, 2011.

[42] PK Andersen and N Keiding. Multi-state models for event history analysis. Sta-

tistical Methods in Medical Research, 11:91–115, 2002.

[43] LS Munoz-Price, JF Frencken, S Tarima, and M Bonten. Handling time depen-

dent variables: Antibiotics and antibiotic resistance. Clinical Infectious Diseases,

62:1558–1563, 2016.

[44] M Schumacher, A Allignol, J Beyersmann, N Binder, and M Wolkewitz. Hospital-

acquired infections – Appropriate statistical treatment is urgently needed! Inter-

national Journal of Epidemiology, 42:1502–1508, 2013.

[45] VD Rosenthal, FE Udwadia, HJ Munoz, N Erben, F Higuera, K Abidi,

EA Medeiros, EF Maldonado, SS Kanj, S Gikas, AG Barnett, and N Graves.

Time-dependent analysis of extra length of stay and mortality due to ventilator-

associated pneumonia in intensive-care units of ten limited-resources countries:

Findings of the International Nosocomial Infection Control Consortium (INICC).

Epidemiology and Infection, 139:1757–1763, 2011.

[46] JF Timsit, JR Zahar, and S Chevret. Attributable mortality of ventilator-

associated pneumonia. Current opinion in Critical Care, 17:464–471, 2011.



126

[47] J Beyersmann, M Wolkewitz, A Allignol, N Grambauer, and M Schumacher. Ap-

plication of multistate models in hospital epidemiology: Advances and challenges.

Biometrical Journal, 53(2):332–350, 2011.

[48] M Wolkewitz, RP Vonberg, H Grundmann, J Beyersmann, P Gastmeier, S Bär-
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[186] L Meira-Machado, J de Uña-Álvarez, and S Datta. Conditional transition proba-

bilities in a non-markov illness-death model. Discussion Papers in Statistics and

Operation Research 12/05, 11, 2012.

[187] TP van Boeckel, S Gandra, A Ashok, Q Caudron, BT Grenfell, SA Levin, and

R Laxminarayan. Global antibiotic consumption 2000 to 2010: An analysis of

national pharmaceutical sales data. The Lancet Infectious Diseases, 14:742–750,

2014.

[188] J Sun. The statistical analysis of interval-censored failure time data, volume 2.

Springer, 2006.

[189] D Commenges. Inference for multi-state models from interval-censored data. Sta-

tistical Methods in Medical Research, 11(2):167–182, 2002.

[190] A Allignol, M Schumacher, C Wanner, C Drechsler, and J Beyersmann. Under-

standing competing risks: A simulation point of view. BMC Medical Research

Methodology, 11, 2011.

[191] R Core Team. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, A, 2016.

[192] TM Therneau. survival: Survival analysis, 2016. R package version 2.40-1.

[193] A Allignol. mvna: Nelson-Aalen estimator of the cumulative hazard in multistate

models, 2013. R package version 1.2-3.



144

[194] A Allignol. etm: Empirical transition matrix, 2014. R package version 0.6-2.

[195] S Højsgaard, U Halekoh, and J Yan. geepack: Generalized estimating equation

package, 2016. R package version 1.2-1.

[196] S Stampf. nonrandom: Stratification and matching by the propensity score, 2014.

R package version 1.42.

[197] H Wickham and R Francois. dplyr: A grammar of data manipulation, 2016. R

package version 0.5.0.

[198] H Wickham. tidyr: Easily tidy data with spread() and gather() functions, 2016.

R package version 0.6.0.

[199] H Wickham and W Chang. ggplot2: An implementation of the grammar of graph-

ics, 2016. R package version 2.1.0.


	INTRODUCTION
	Endpoints in clinical trials for antimicrobial drugs
	The probability of being cured and alive (PCA)
	Statistical methods for PCA
	Scope of thesis

	MODEL SPECIFICATION
	Mathematical background
	Multistate models
	The cure-death model
	Motivation for estimation and simulation techniques

	NON-PARAMETRIC ESTIMATION
	Nelson-Aalen and Aalen-Johansen estimator
	Non-parametric estimation of the PCA function

	TREATMENT COMPARISON
	Risk differences cured and alive
	Time-simultaneous confidence bands
	Pseudo-value regression
	Restricted log-rank-based test

	SIMULATION
	Simulation scenarios
	Results
	Discussion

	APPLICATION
	Ceftobiprole trial
	The trial
	Results
	Discussion

	MODIFY I+II trial
	The trial
	Reconstruction of transition rates
	Results
	Considerations about a suitable estimand for rCDI prevention
	Discussion

	OUTCOMEREA study
	The study
	Propensity score
	Results
	Post hoc analyses and discussion


	DISCUSSION AND CONCLUSION
	Notation and Acronyms
	Software
	Bibliography

