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Abstract 

The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical 1 

characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo 2 

model of acute systemic inflammation is unknown. Here, we obtained whole blood from 156 3 

patients with sepsis and 82 healthy subjects among whom eight were challenged with 4 

lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation 5 

microarray analysis of leukocyte RNA we found long non-coding RNA and, to a lesser extent 6 

small non-coding RNA, were significantly altered in sepsis relative to health. Long non-coding 7 

RNA expression, but not small non-coding RNA, were largely recapitulated in human 8 

endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as 9 

previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a 10 

benchmark dissection of the blood leukocyte “regulome” that can facilitate prioritization of future 11 

functional studies. 12 
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Introduction 13 

Sepsis is a multifaceted syndrome that develops as the consequence of an abnormal host 14 

response to infection leading to organ failure and high risk of death.[1, 2] It is estimated that 2-5 15 

million deaths worldwide are attributable to sepsis.[3] Despite empirical antimicrobial therapy 16 

and advances in intensive care, it is expected that sepsis will remain a major healthcare problem. 17 

As such, sepsis has been recognized as a global health priority in 2017 by the World Health 18 

Assembly and WHO.[4] In spite of more than 100 clinical trials having evaluated drugs targeting 19 

specific components of the host response to infection,[5] no specific treatment for sepsis has been 20 

approved.[1, 2] This argues for a deeper understanding of sepsis immunopathology to identify 21 

veritable drug targets.[5, 6] 22 

Protein-coding RNA expression profiling of blood leukocytes from sepsis patients has 23 

helped to broaden our understanding of sepsis immunopathology,[7] for example, by unmasking 24 

defects in leukocyte energy metabolism of sepsis patients,[8] and by classifying sepsis patients as 25 

transcriptomic endotypes with prognostic and pathophysiological value.[9-11] From fruit flies to 26 

man, the protein-coding part of genomes from different species is remarkably similar in numbers 27 

and functions,[12] which suggests that numerous aspects of complex biology in eukaryotes might 28 

stem from non-protein-coding regions of the genome. The increase in genomic coverage of tiled 29 

microarrays and massive cDNA sequencing undertaken by the Functional Annotation of the 30 

Mammalian genome (FANTOM) consortium revealed pervasive transcription outside of the 31 

known gene loci.[13, 14] Moreover, such studies facilitated the demonstration that non-coding 32 

RNAs were under negative evolutionary selection, which implied functionality rather than plain 33 

“transcriptional noise”.[15] Indeed, a substantial proportion of non-coding RNA, by general 34 

convention defined as long (>200 nucleotides) or small (<200 nucleotides) non-coding RNAs, 35 

yields clear phenotypic effects in both in vitro and in vivo functional studies.[16-19] Ever-36 
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growing numbers of small non-coding RNAs, for example micro (mi)RNAs (20-24 nucleotides), 37 

or long non-coding RNAs such as long intergenic non-coding (linc)RNAs, have been linked to 38 

human diseases.[20, 21] An important aspect of non-coding RNAs is their capacity for precise 39 

regulation of cellular biological processes via epigenetic mechanisms, including complex 40 

immune system processes.[22-24]  41 

Knowledge of the non-coding RNA landscape in patients with sepsis is limited. Here, we 42 

report a comprehensive screen of non-coding RNA expression patterns in blood leukocytes of 43 

patients with sepsis and their relation to clinical characteristics and soluble mediators of the host 44 

response. In addition, by using a guilt-by-association approach we positioned non-coding RNAs 45 

in network modules encompassing protein-coding RNA reflecting distinct cellular biological 46 

pathways. 47 

 48 

Results 49 

Protein-coding and non-coding blood transcriptomes.  50 

In order to build a comprehensive map of RNA expression in the context of sepsis, we 51 

evaluated protein-coding, long and small non-coding RNA expression in whole blood leukocytes 52 

from 156 sepsis patients and 82 healthy subjects (median age [Q1-Q3], 54 [42 – 60]; 26% male). 53 

Patient characteristics are tabulated in Table 1 - source data 1, causative pathogens in 54 

Supplementary file 1. Principal component (PC) analysis of the most abundant protein-coding 55 

RNAs (n=18,063) and long non-coding RNAs (n=16,087) showed clear partitioning of patients 56 

with sepsis distinct from healthy subjects (Figure 1A). In contrast, small non-coding RNAs 57 

(n=4949) showed only minimal separation between patients and healthy subjects. We observed 58 

similar patterns after calculating the molecular distance to health (MDTH)[25, 26] index, a 59 

measure of transcript-level expression perturbation relative to health, with significantly higher 60 
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MDTH indices in sepsis (Figure 1B). Notably, long non-coding RNA transcripts exhibited the 61 

broadest expression perturbations in healthy participants and sepsis patients, exemplified by the 62 

highest overall MDTH indices (Figure 1B).  63 

Comparing sepsis patients to healthy subjects identified 15,097, 13,158 and 635 64 

significantly altered (adjusted p-value<0.01) protein-coding, long and small non-coding RNAs, 65 

respectively (Figure 1C). Ingenuity pathway analysis of the significantly altered protein-coding 66 

RNA transcripts revealed associations to various canonical signaling pathways that included 67 

elevated pro- and anti-inflammatory pathways, cell cycle, DNA damage response and metabolic 68 

pathways (Figure 1 - figure supplement 1). Transcripts with reduced expression were 69 

predominantly associated to T helper cell activation, antigen presentation and B cell responses. 70 

Results on protein-coding RNA profiles are in agreement with previous reports from our and 71 

other groups.[7] LincRNAs, antisense and pseudogene RNA transcripts represented the most 72 

highly altered long non-coding RNA biotypes in sepsis relative to health (Figure 1D). Micro 73 

(mi)RNAs, stem loop RNAs and small nucleolar (sno)RNAs were the most abundant small non-74 

coding RNA biotypes (Figure 1E).  75 

 76 

Protein-coding and non-coding blood transcriptomes, demographics and clinical 77 

characteristics  78 

In order to understand inter-individual variation in RNA expression profiles, we set out to 79 

determine the contribution of demographics and clinical characteristics to protein-coding and 80 

non-coding RNA expression variation in sepsis patients (Figure 2), as well as healthy subjects. 81 

Using a variance partition (multivariable) approach,[27] differences in gender and age of healthy 82 

subjects explained 5%, 4% and 4% of the variation in protein-coding, long and small non-coding 83 

RNA expression, respectively (Figure 2 - figure supplement 1A). Specific transcripts had high 84 
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percentages of explainable variance, in particular long non-coding RNAs against gender. Not 85 

surprisingly, expression of long non-coding RNAs positioned on the X and Y chromosomes, for 86 

example TXLNGY, LINC00278 and XIST had 98%, 97% and 94% of variance explained by 87 

gender, respectively (Figure 2 - figure supplement 1B). In sepsis patients, a multivariable model 88 

that incorporated demographics and common clinical characteristics, including APACHE IV, 89 

SOFA scores, shock and Charlson comorbidity indices, cumulatively explained 18%, 13% and 90 

8% of protein-coding, long and small non-coding RNA expression variance, respectively (Figure 91 

2A). Specifically, sepsis primary site of infection (lung or abdomen) and place of acquisition 92 

(community or hospital) explained the highest proportion of variation in protein-coding (6.7%) 93 

and long non-coding (4.4%) RNA expression (Figure 2A). Despite overall low proportions of 94 

variance explained, outlier RNA transcripts could be detected. For example, some specific 95 

transcripts demonstrated high individual explained variance against primary sepsis diagnosis, 96 

including protein-coding RNA encoding basic leucine zipper and W2 domains 1 (BZW1); long 97 

non-coding RNA SUMO2 pseudogene 1 (SUMO2P1); and small non-coding RNA miRNA hsa-98 

miR-7855-5p (Figure 2B). Septic shock explained low proportions of variation in RNA 99 

expression (Figure 2A), and directly comparing patients with septic shock to patients without 100 

shock resulted in 837 and 80 significantly altered protein-coding and long non-coding RNA, 101 

respectively (Figure 2C). High expression protein-coding RNA included matrix 102 

metalloproteinase 8 (MMP8), resistin (RETN) and lipocalin 2 (LCN2). Low expression protein-103 

coding RNA included a Na+/Ca2+ exchanger (SLC8A1), membrane metalloendopeptidase 104 

(MME) and interleukin (IL-) 6 receptor (IL6R). Long non-coding RNA included lincRNA lung 105 

cancer associated transcript 1 (LUCAT1; low expression) and antisense RNA (LRRC75A-AS1; 106 

high expression) (Figure 2C). No significant alterations were identified in small non-coding 107 

RNA expression profiles. Evaluating RNA expression in patients discordant for survival after 28 108 
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days, identified 146 significantly altered protein-coding RNA (Figure 2 - figure supplement 109 

1C). No significant differences were uncovered in non-coding RNA expression profiles, 110 

suggesting that non-coding RNA profiles obtained on ICU admission may not be suitable as 111 

mortality predictors.      112 

 113 

Protein-coding and non-coding RNA profiles of sepsis patients relative to human 114 

endotoxemia. 115 

Previous studies have compared the protein-coding RNA response in patients with sepsis or 116 

trauma (non-septic) to the response after LPS administration to healthy volunteers in a controlled 117 

clinical setting (human endotoxemia).[8, 28-33] Here, we sought to extend on those observations 118 

by evaluating long and small non-coding RNA expression in sepsis relative to temporal leukocyte 119 

responses in human endotoxemia (Figure 3). As previously reported in this model,[8, 28-30] 120 

robust alterations in protein-coding RNA expression were noted after 2, 4 and 6 hours of LPS 121 

administration (Figure 3 - figure supplement 1). Fold expression in sepsis (relative to health) 122 

was directly correlated to fold expression after 2, 4 and 6 hours LPS (Figure 3A). Long non-123 

coding RNA expression was robustly altered in endotoxemia, with 2361, 5053,  2925 and 43 124 

significant differences after 2, 4, 6 and 24 hours endotoxemia, respectively (Figure 3 - figure 125 

supplement 2A). Pseudogenes, lincRNA and antisense RNA were the most abundant long non-126 

coding RNA biotypes (Figure 3B). Small non-coding RNA were modestly altered in human 127 

endotoxemia (Figure 3 - figure supplement 2B). The most abundant biotypes of small RNA 128 

were miRNA (Figure 3C). Compared to fold expression in sepsis revealed significant 129 

correlations after 2, 4 and 6 hours of endotoxemia (Figure 3D). The highest r
2
 was found for 130 

sepsis and 4 hours post-LPS (r
2 

= 0.51). Correlation analysis of small RNA fold expression 131 

during endotoxemia against fold expression in sepsis revealed indirect correlations (Figure 3E).  132 
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 133 

Functional inference of non-coding RNA 134 

To better understand the functional organization of the non-coding leukocyte transcriptome in 135 

sepsis, particularly long non-coding RNA, we undertook a guilt-by-association approach. On the 136 

basis of a bi-weight midcorrelation matrix of the most variable protein-coding and long non-137 

coding RNA (n=8539; coefficient of variation > 5%) in sepsis patients only (Figure 4), a 138 

weighted network was built with scale-free topology (Figure 4 - figure supplement 1A).[34-36] 139 

Hierarchical clustering uncovered 23 network modules (clusters) each harboring more than 100 140 

inter-correlating RNA transcripts (Figure 4A and Figure 4 - figure supplement 1B). Of the 141 

8539 RNA transcripts, 158 transcripts did not cluster (designated as a grey module). Seventeen 142 

modules were associated to specific gene ontologies or canonical signaling pathways that 143 

included cell death/olfactory receptor activity/cell-cycle G2/M DNA damage checkpoint and 144 

regulation (turquoise module, n=1001 transcripts) and RNA biosynthesis/RNA binding (yellow 145 

module, n=579 transcripts) (Figure 4A). Eight modules in the co-expression network were 146 

significantly enriched for long non-coding RNA relative to protein-coding RNA (Fisher’s 147 

adjusted p < 0.01; Figure 4B). This suggests the leukocyte long non-coding transcriptome of 148 

sepsis patients is primarily co-expressed with protein-coding RNA, but 34% of non-coding RNA 149 

modules were organized into distinct units. Evaluation of total and intra-module connectivities, 150 

which measure the importance of each module relative to the overall structure of co-expression 151 

networks,[34] identified two “driver” modules, namely the cell death/olfactory receptor 152 

activity/cell-cycle G2/M DNA damage checkpoint and regulation (turquoise module, n=1001 153 

transcripts) and RNA biosynthesis/RNA binding (yellow module, n=579 transcripts) modules 154 

(Figure 4C, D and Figure 4 - figure supplement 1C). The former module included protein-155 

coding RNA encoding ATM serine/threonine kinase (ATM), TNF alpha induced protein 3 156 
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(TNFAIP3 or A20), histone deacetylase 2 (HDAC2) and mucosa-associated lymphoid tissue 157 

lymphoma translocation protein 1 (MALT1) paracaspase (Figure 4D). Non-coding RNA included 158 

GABPB1-AS1, THAP9-AS1 and SCARNA9. We subsequently focused our attention on integrating 159 

miRNA profiles to the co-expression network. Considering miRNA profiles that were 160 

significantly altered in sepsis patients relative to health (Figure 1C), and miRNA-to-gene 161 

interactions (miRWalk method), we detected 49 small RNAs in 5 network modules with 162 

explained variance estimated > 20%, including hsa-miR-200c-3p (translation initiation module), 163 

SNORD84 (regulation of cytokine secretion/Toll-like receptor (TLR) signaling module), HBII-164 

276 (translation initiation module) and hsa-miR-1275 (sensory perception of chemical 165 

stimulus/olfactory receptor activity module) and hsa-miR-664b-3p  (neutrophil 166 

degranulation/extracellular exosome module) (Figure 4E). Of note, hsa-miR-200c-3p has been 167 

shown to modify TLR4 signaling efficiency dependent on MYD88-mediated pathways in an 168 

embryonic kidney cell line (HEK293).[37]    169 

Next, we evaluated the association of network modules to soluble mediators of the host response 170 

and clinical severity scores. Neutrophil degranulation (secretory; red), protein ubiquitination 171 

(pink) and mitotic cell cycle (tan) modules correlated with soluble mediators of inflammation (C 172 

reactive protein (CRP), interleukin (IL)-6, IL-10, IL-8), endothelial responses (E-Selectin and 173 

angiopoietin-2 (ANG2)), coagulation (D-Dimer) and clinical variables of disease severity 174 

(Figure 5A). In contrast, antigen presentation/Th1-Th2 cell activation (green module), regulation 175 

of cytokine secretion/TLR signaling (black module) and type-I interferon signaling/double 176 

stranded RNA binding (salmon module) were indirectly correlated to various soluble mediators 177 

and clinical severity indices. Patients with septic shock showed significantly higher neutrophil 178 

degranulation (secretory) expression patterns (Figure 5B). Protein-coding RNA transcripts in the 179 

neutrophil degranulation (secretory) module included matrix metalloproteinases (MMP8 and 180 
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MMP9), neutrophil activation cluster of differentiation 177 (CD177), lipocalin 2 (LCN2) and 181 

arginase 1 (ARG1) (Figure 5C). LincRNA and antisense RNA included an inducer of 182 

differentiation MYOSLID (Myocardin-Induced Smooth Muscle LncRNA, Inducer Of 183 

Differentiation), cell proliferation and metastasis associated antisense RNA of the titin gene 184 

(TTN-AS1) and a IL10 receptor beta subunit antisense RNA, IL10RB-AS1. Calculating intra-185 

modular connectivities enabled us to define “hub” transcripts, which are understood to represent 186 

cogs in the functional output of a network module,[34, 38] and identified MYOSLID (neutrophil 187 

degranulation; red module) and LUCAT1 (Lung Cancer Associated Transcript 1) in the TLR-188 

signaling (black) module, as module “hubs”. In line with their respective module eigengene 189 

correlations to inflammatory response markers, MYOSLID expression was directly correlated 190 

with levels of inflammatory response markers IL-6, IL-8, IL-10, and acute phase response protein 191 

CRP (Figure 5D). In contrast, LUCAT1 expression was indirectly correlated to soluble mediators 192 

of inflammation, except for CRP (Figure 5E). 193 

 194 

Discussion 195 

In this study we found that the transcriptional changes in critically ill patients with sepsis 196 

are not exclusive to protein-coding RNAs. Whole blood long non-coding RNAs, and to a lesser 197 

extent small non-coding RNAs, were significantly altered in sepsis patients relative to healthy 198 

subjects. The pattern of protein-coding and long non-coding RNA profiles in sepsis were 199 

mimicked by expression profiles in a human endotoxemia model, notably at a time point 200 

indicative of endotoxin tolerance. Small non-coding RNA profiles in sepsis patients were not 201 

recapitulated in human endotoxemia. In general, common clinical characteristics explained low 202 

proportions of variation in protein-coding and non-coding RNA profiles, suggesting that variation 203 

in leukocyte responses are largely not explained by clinical parameters. Leveraging on the 204 
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concepts of network biology, protein-coding and non-coding RNA were clustered as functional 205 

biological units with RNA binding/RNA biosynthesis and cell death/olfactory receptor 206 

activity/cell-cycle G2-M DNA damage checkpoint and regulation modules central to network 207 

architecture.  208 

Advances in genomics, notably massively parallel cDNA sequencing, have shown that 209 

active transcription is not exclusive to protein-coding RNA regions.[14] Regions of the genome 210 

void of protein-coding genes have since been shown to be actively transcribed in the context of 211 

various diseases.[21] Small non-coding RNAs, mainly microRNAs, as well as long non-coding 212 

RNAs were linked to specific immune processes.[24, 39] While microRNAs have been 213 

established as veritable epigenetic modifiers of transcriptional outputs, studies on the functional 214 

aspects of long non-coding RNAs have only recently begun. However, those studies were 215 

centered primarily on mouse models.[18, 19] This presents a problem for translation to human 216 

physiology because non-coding RNA sequences are typically not conserved between species 217 

[40]. Furthermore, expression of non-coding RNAs was shown to exhibit substantially higher 218 

inter-individual variation in healthy subjects as compared to protein-coding RNAs alone.[41] In 219 

line with those observations our data showed that long non-coding RNA expression patterns were 220 

far more variable across individuals (healthy or sepsis) than protein-coding and small non-coding 221 

RNAs. The sources of increased inter-individual variation in long non-coding RNA expression 222 

relative to protein-coding and small non-coding RNAs are as yet unknown. Lower conservation 223 

coupled with faster evolution rates of long non-coding RNA regions, which seemingly harbor 224 

more single nucleotide polymorphisms (SNPs) than protein-coding genes,[42] as well as the 225 

possibility of their relatively higher susceptibility to environmental and lifestyle factors,[43] may 226 

be at the basis of the extensive variation in long non-coding RNA expression.  227 
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In line with previous studies,[31, 33] we found that protein-coding RNA alterations during 228 

endotoxemia mimicked those that ensue in sepsis patients. The human endotoxemia model is a 229 

highly relevant in vivo model of acute systemic inflammation in the context of a controlled 230 

clinical setting.[44] In general, the model is characterized by a robust systemic response, 231 

including leukocyte transcriptional responses, exhibiting shared and unique temporal changes that 232 

resolve within 24 hours of bolus administration.[28, 30]  In extension to the previously reported 233 

data, based on a single time-point of human endotoxemia,[31, 33] we found that the correlation 234 

between sepsis and human endotoxemia was also dependent, at least in part, on timing of the 235 

response to LPS. The highest correlation was found at 4 hours, a time point at which the capacity 236 

of cytokine production by leukocytes is typically reduced in the human endotoxemia model, 237 

indicative of endotoxin tolerance.[8, 45]  Long non-coding RNA alterations in human 238 

endotoxemia also mimicked those in sepsis, with similar time dependencies as protein-coding 239 

RNA. In contrast, small non-coding RNA expression profiles in sepsis patients were not reliably 240 

recapitulated in human endotoxemia, primarily showing indirect correlations. This may be due to 241 

typically low expression patterns of miRNA, compared to protein-coding and long non-coding 242 

RNA, and reported high specificities of miRNA to developmental stage and cell-type.[46] The 243 

host response during infection is characterized by a balance between resistance (seeking to limit 244 

the pathogen load) and tolerance (aiming to retain cell and organ functions).[47] In sepsis both 245 

mechanisms can become uncontrolled, wherein aberrant activation of resistance pathways results 246 

in tissue damage and inadequate tolerance can cause immune suppression with enhanced 247 

susceptibility to secondary infections.[48] While our time-sequential data in healthy humans 248 

injected with LPS suggest that coding and long non-coding RNA profiles in blood leukocytes of 249 

sepsis patients particularly reflect a tolerant state, time course studies in patients are needed to 250 



13 
 

increase the insight into the role of distinct RNA species in the interplay between resistance and 251 

tolerance.   252 

A substantial proportion of variance in protein-coding and non-coding RNA expression in 253 

critically ill patients with sepsis remained unexplained. Other sources of variation, not assessed in 254 

this study, include patient genetics and time between the onset of sepsis and ICU admission.[49, 255 

50] The former represents an important source of inter-individual variation where SNPs 256 

segregating in populations are in part tightly related to RNA expression variability.[49] This was 257 

shown in a recent prospective study in sepsis due to community-acquired pneumonia (CAP), 258 

wherein SNPs influencing gene expression patterns were identified.[10] The time of onset of 259 

sepsis is a current “black box” in the field as it cannot be accurately determined, thereby resulting 260 

in considerable uncertainty since patients are presumably admitted to the ICU at various stages of 261 

the sepsis syndrome. Despite overall low percent variation explained specific protein-coding and 262 

long non-coding RNA transcripts had high percent variation attributable to, particularly, primary 263 

diagnosis that included infections site (lung or abdomen) and place of acquisition (community or 264 

hospital), which may constitute important proxies to discern organ-specific infections that are 265 

typically caused by different causal pathogens.[51-53] 266 

Determining cellular biological pathways wherein long non-coding RNA function is a 267 

major challenge. To address this challenge, we undertook a guilt-by-association strategy that 268 

sought to position long non-coding RNA in co-expression modules of tightly correlating protein-269 

coding RNA, thereby infer on functional outputs of long non-coding RNA by virtue of the 270 

pathways that associate with protein-coding RNA in each module. By leveraging on the concepts 271 

of scale free networks,[54] we built a map of protein-coding and non-coding RNA relationships 272 

that pointed to cell death/olfactory receptor activity/cell-cycle G2/M DNA damage checkpoint 273 

and regulation (turquoise module) and RNA biosynthesis/RNA binding (yellow module) as 274 
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central to the organization of the co-expression network. Cell death or exhaustion, particularly in 275 

lymphocytes, have been proposed as causal features of immunosuppression and lethality in 276 

sepsis.[55] Our findings further strengthen this hypothesis and position previously unknown non-277 

coding RNA, including an autophagy and chemical stress responder GABPB1-AS1,[56, 57] as 278 

putative regulators of cell death in the context of sepsis. Interestingly, protein-coding RNA in the 279 

cell death (turquoise) module also included olfactory receptors and cell-cycle DNA damage 280 

regulators. Modulation of DNA damage responses was demonstrated as a potential therapeutic 281 

path that might be exploited to confer protection to severe sepsis.[58] Little is known about 282 

olfactory receptors in non-chemosensory cells, but a growing body of evidence suggests they are 283 

not exclusive to the nose.[59] They have been shown to be involved in cell-cell recognition, 284 

migration, proliferation and apoptosis.[60]  285 

In conclusion, we here describe the non-coding RNA landscape in blood leukocytes of 286 

sepsis patients upon admission to the ICU. By considering non-coding RNA expression patterns 287 

in relation to protein-coding RNA we provide an important layer to the blood leukocyte 288 

“regulome” in a clinical context, which may facilitate prioritization of non-coding RNA in future 289 

functional studies.  290 

 291 

Materials and Methods 292 

 293 

Key Resources Table 

Reagent 

type 

(species) 

or 

resource 

Designation 
Source or 

reference 
Identifiers 

Additional 

information 
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biological 

sample 

(Homo 

sapiens) 

 Total RNA Leukocytes   
 

commercial 

assay or kit 

PAXgene Blood 

miRNA kit 
 Qiagen Cat no./ID: 763134   

commercial 

assay or kit 

Human Transcriptome 

Array 2.0 

Affymetrix; 

Thermo 

Fisher 

 microarray 

commercial 

assay or kit 

miRNA 4.1 96-array 

plate 

Affymetrix; 

Thermo 

Fisher 

 microarray 

commercial 

assay or kit 

FlexSet cytometric 

bead arrays  

BD 

Biosciences 
  

commercial 

assay or kit 

Immunoturbidimetric 

assay 

Roche 

diagnostics 
  

commercial 

assay or kit 

Luminex Flow 

Cytometry Analyzer 

Luminex 

Corp. 
RRID:SCR_018025  

commercial 

assay or kit 

Sysmex CA-1500 

System 

Siemens 

Healthineers 
  

chemical 

compound, 

drug 

Lipopolysaccharide- 

Escherichia coli, 100 

ng/ml, Ultrapure 

Invivogen Cat#0111:B4  

software, 

algorithm 

R Project for 

Statistical Computing, 

(version 3.5.0) 

R 

Development 

Core Team 

RRID:SCR_001905 
 

software, 

algorithm 
Oligo (version 1.44) Bioconductor 

Carvalho BS & Irizarry 

RA Bioinformatics 

2010, 26:2363-2367. 

RRID:SCR_015729 

 

software, 

algorithm 
SVA (version 3.28) Bioconductor 

Leek JT & Storey JD 

Plos Genetics 2007, 

3:1724-1735. 
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RRID:SCR_012836 

software, 

algorithm 

genefilter (version 

1.62) 
Bioconductor 

Bourgon R et.al. PNAS 

2010, 107:9546-9551. 
 

software, 

algorithm 
arrayQualityMetrics Bioconductor 

Kauffmann A, et.al. 

Bioinformatics 2009, 

25:415-416. 

RRID:SCR_001335 

 

software, 

algorithm 

Affymetrix 

Transcriptome 

Analysis Console  

Affymetrix RRID:SCR_018718  

software, 

algorithm 
limma (version 3.36) Bioconductor 

Smyth GK. Springer; 

2005: 397-420. 

RRID:SCR_010943 

 

software, 

algorithm 

Ingenuity pathway 

analysis software 
Qiagen RRID:SCR_008653  

software, 

algorithm 

WGCNA (version 

1.64) 
Bioconductor 

Langfelder P & Horvath 

S. BMC Bioinformatics 

2008, 9:559. 

RRID:SCR_003302 

 

software, 

algorithm 
miR-Walk 2.0  

University of 

Heidelberg, 

Germany 

Dweep H, et.al. J 

Biomed Inform 2011, 

44:839-847. 

 

software, 

algorithm 

variancePartition 

(version 1.10) 
Bioconductor 

Hoffman GE & Schadt 

EE BMC 

Bioinformatics 2016, 

17:483. 

 

software, 

algorithm 
mixOmics Bioconductor 

Rohart F, et.al. PLoS 

Comput Biol 2017, 

13:e1005752. 

RRID:SCR_016889 

 

other 
Deposited data super-

series 

Gene 

Expression 

Omnibus 

GSE134364 
 

 294 
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Patient population and inclusion criteria 295 

This study was part of the Molecular Diagnosis and Risk Stratification of sepsis (MARS) project, 296 

a prospective observational study in the mixed ICUs of two tertiary teaching hospitals in the 297 

Netherlands (Academic Medical Center, Amsterdam and University Medical Center Utrecht, 298 

Utrecht) (ClinicalTrials.gov identifier NCT01905033).[51, 61, 62] For the current study, we 299 

selected consecutive patients with sepsis from the MARS biorepository who were older than 18 300 

years of age, had been admitted to the ICU between July 2012 and January 2014. Sepsis (n=156) 301 

was defined as the presence of community-acquired pneumonia (CAP), hospital-acquired 302 

pneumonia (HAP) or intra-abdominal infection diagnosed within 24 hours of ICU admission with 303 

a culture proven or probable likelihood using criteria as described[63], accompanied by at least 304 

one additional general, inflammatory, hemodynamic, organ dysfunction, or tissue perfusion 305 

variable described in the third international consensus definitions for sepsis and septic shock.[64] 306 

Patients with aspiration pneumonia, with multiple sites of infection, and patients admitted to the 307 

ICU more than 2 days after the initiation of antibiotics were excluded. All readmissions and 308 

patients transferred from another ICU were also excluded, except when patients were referred to 309 

one of the study centers on the same day of presentation to the first ICU. Severity was assessed 310 

by APACHE IV[63] and SOFA score excluding the central nervous system component.[65] 311 

Shock was qualified by the use of vasopressors (norepinephrine, epinephrine or dopamine) for 312 

hypotension in a norepinephrine-equivalent dose of more than 0.1 µg/kg/min in patients with a 313 

SOFA score of at least 2.[64] Blood was collected in PAXgene tubes (Becton-Dickinson, Breda, 314 

The Netherlands) and ethylenediaminetetraacetic acid (EDTA) vacutainer tubes within 24 hours 315 

of ICU admission. Definitions of comorbid and immunocompromised conditions are reported in 316 

the online data supplement. 317 

 318 
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Healthy participants and endotoxemia 319 

PAXgene and EDTA tubes were also obtained from 82 healthy subjects. Eight male subjects 320 

were exposed to intravenous LPS in a Phase I, randomized, single-blind, parallel group, placebo 321 

controlled study (clinicaltrials.gov identifier NCT02328612); the subjects who received placebo 322 

were used in the current study.[30] Subjects were infused with LPS over one minute (2 ng/kg; 323 

from Escherichia [E.] coli, US standard reference endotoxin, kindly provided by Anthony 324 

Suffredini, National Institute of Health, Bethesda, MD). Whole blood was collected in PaxGene 325 

Blood tubes (Qiagen) before and 2, 4, 6, 24 hours after LPS administration.  326 

 327 

Immunological markers   328 

EDTA-anticoagulated blood plasma collected on ICU admission was used for soluble mediator 329 

measurements. Interleukin (IL)-6, IL-8, IL-10, soluble intercellular adhesion molecule-1 (ICAM-330 

1), soluble E-selectin and fractalkine were measured using FlexSet cytometric bead arrays (BD 331 

Biosciences, San Jose, CA) using a FACS Calibur (Becton Dickinson, Franklin Lakes, NJ, NJ, 332 

USA). Neutrophil gelatinase-associated lipocalin (NGAL), Angiopoietin-1, angiopoietin-2, 333 

protein C, antithrombin, matrix metalloproteinase (MMP)-8 (R&D Systems, Abingdon, UK), and 334 

D-dimer (Procartaplex, eBioscience, San Diego, CA) were measured by Luminex multiplex assay 335 

using a BioPlex 200 (BioRas, Hercules, CA). C-reactive protein (CRP) was determined by an 336 

immunoturbidimetric assay (Roche diagnostics). Platelet counts were determined by 337 

hemocytometry, prothrombin time (PT) and activated partial thromboplastin time (aPTT) by 338 

using a photometric method with Dade Innovin Reagent or by Dade Actin FS Activated PTT 339 

Reagent, respectively (Siemens Healthcare Diagnostics). Normal biomarker values were obtained 340 

from 27 age- and sex-matched healthy subjects, except for CRP, platelet counts, PT and aPTT 341 

(routine laboratory reference values).  342 
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 343 

Microarrays and data processing  344 

Total RNA was isolated by means of PaxGene blood miRNA isolation kit (Thermo-Fisher) as per 345 

manufacturer’s instructions. Quality RNA (Agilent 2100 Bioanalyzer, Agilent Technologies; RIN 346 

> 6) was processed and hybridized to either the GeneChip Human Transcriptome Array (HTA) 347 

2.0 (Thermo-Fisher) or the miRNA 4.1 96-array plate (Thermo-Fisher) following manufacturer’s 348 

instructions. Both arrays were done on all samples (sepsis patients, controls and healthy subjects 349 

injected with LPS). Microarrays were scanned at the Cologne Center for Genomics, Cologne, 350 

Germany.  351 

The HTA 2.0 scans (.CEL) were processed in the R language and environment for statistical 352 

computing version 3.5.0 (R Development Core Team, Foundation for Statistical Computing, 353 

Vienna, Austria). Following robust multi-average (RMA) background-correction, quantile 354 

normalization and log2-transformation using the oligo method (version 1.44),[66] data were 355 

evaluated for non-experimental chip effects by means of surrogate variable analysis (SVA; 356 

version 3.28) and adjusted using the combat method.[67] Probes were annotated using biomart 357 

(version 2.36.1),[68] and low expression probes were filtered by means of the genefilter method 358 

(version 1.62).[69] The miRNA-4.1 scans (.CEL) were analyzed by means of Affymetrix 359 

Expression Console software (Thermo-Fisher). Probes were normalized using the RMA method 360 

and detection above background (DABG) probe level detection. Homo sapiens annotated probes 361 

with detection p-value < 0.05 in at least one sample were considered for downstream analyses. 362 

Quality of HTA2.0 and miRNA-4.1 arrays was evaluated by means of the arrayqualitymetrics R 363 

package.[70] Comparisons between study groups were done using the limma method (version 364 

3.36)[71] and significance was demarcated by Benjamini-Hochberg multiple test adjusted 365 

probabilities (adjusted p < 0.01). The linear model included age and sex as additive covariates. 366 
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The molecular-distance-to-health (MDTH) index was calculated as described previously.[25, 26] 367 

Ingenuity Pathway Analysis (Ingenuity systems, Qiagen) was used to determine the most 368 

significant canonical signaling pathways for elevated and reduced protein-coding RNA 369 

transcripts considering adjusted Fisher’s probabilities (adjusted p < 0.05) specifying the Ingenuity 370 

knowledgebase as reference and human species. All other parameters were default.  371 

The novelty of our study, that is, profiling non-coding RNA expression in leukocytes of patients 372 

with sepsis, precludes an adequate study power estimation. However, considering known co-373 

regulation with protein-coding RNA expression, we provide study power estimates based on 374 

previous observations in typical gene expression studies.[8-10] Considering a false discovery rate 375 

of 5%, beta error level 5% (95% power), and typical effect sizes greater than 0.25 in sepsis 376 

relative to health, a sample size of 42 per group was estimated. In addition, 8 healthy volunteers 377 

in a human endotoxemia challenge would have more than 95% power to detect differences 378 

relative to pre-challenge (baseline) samples.[8, 10, 28-33] Using a continuous model, we 379 

estimated 156 patients would have more than 98% power to detect significant associations with 380 

demographic or clinical variables (false-discovery rates of 5%). 381 

 382 

Co-expression network and pathway analysis 383 

The weighted gene co-expression network analysis (WGCNA) method (version 1.64) was used to 384 

build the leukocyte co-expression network as described previously.[34, 36, 38] A pair-wise 385 

biweight midcorrelation matrix of the most variable transcripts (coefficient of variation > 5%) 386 

was transformed into an adjacency matrix by using a “soft” power function of 8 ensuring scale-387 

free topology.[34, 38] The adjacency matrix was further transformed into a topological overlap 388 

matrix to enable the identification of modules (clusters) encompassing highly inter-correlating 389 

RNA transcripts by using a dynamic tree cut method (version 1.63).[34, 38] Modules were 390 
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summarized by means of the eigengene value, defined as the first principal component of the 391 

module expression matrix and the module membership measure. Protein-coding RNA in each 392 

module were analyzed for enrichment of gene ontologies for biological processes (GO:BP), 393 

molecular function (GO:MF) and cellular compartment (GO:CC) using the Gene Ontology 394 

Consortium database with significance defined by adjusted p-value < 0.05 395 

(www.geneontology.org).[72] Biofunctions were predicted using Ingenuity Pathways software 396 

(Ingenuity pathway analysis, Qiagen Bioinformatics)  specifying activation z-score < 2 or > 2 and 397 

adjusted p-value < 0.05. The miR-Walk atlas of gene-miRNA-target interactions was used to 398 

evaluate predicted interactions of miRNA with module-specific genes by specifying the miR-399 

Walk algorithm.[73, 74] Human species annotations and 3’ untranslated region (UTR) 400 

interactions as well as a minimum seed length equating to 7 were specified. All other parameters 401 

were default. 402 

 403 

Statistics 404 

Statistical analysis was performed in the R statistical environment (v 3.5.0). Comparison of 405 

continuous data between categories was done with the Wilcoxon rank sum test. Correlation 406 

analysis of continuous data was performed using Pearson’s method unless otherwise stated as 407 

well as the coefficient of determination (r
2
). Categorical data were analyzed by Fisher exact tests 408 

or Chi-squared tests. Multiple comparison (Benjamini-Hochberg) adjusted p-values < 0.05 409 

defined significance. The proportion of variance in RNA expression explained by demographics 410 

and clinical characteristics was calculated using a multivariate approach implemented in the 411 

variancePartition method (version 1.10).[27] A multivariate linear model was fit including age, 412 

gender,  primary diagnosis, total SOFA, APACHE IV scores, shock and Charlson comorbidity 413 

indices. Principal component analysis was done using the mixOmics package, specifying 10 414 

http://www.geneontology.org/
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components.[75] Data is presented in the form of volcano plots, pie charts, dot plots, bar charts, 415 

circular and violin plots. 416 
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Table 1. Baseline characteristics and outcomes of critically ill patients with sepsis.  643 

Parameter 
Sepsis patients 

(n = 156) 

Age, years 62 [50 - 70] 

Male sex 98 (62.8) 

White ethnicity 140 (89.7) 

Medical admission 117 (75.0) 

Immune suppression 45 (28.8) 

Cardiovascular insufficiency 43 (27.6) 

Malignancy 45 (28.8) 

Renal insufficiency 18 (11.5) 

Respiratory insufficiency 37 (23.7) 

Charlson comorbidity index 4 [2 - 6] 

APACHE IV score 72 [58 - 92] 

SOFA score 7 [4 - 9] 

Shock 86 (55.1) 

Mechanical ventilation 128 (82.1) 

Primary diagnosis  

Pneumonia 99 (63.5) 

 Community-acquired 68 (43.6) 

 Hospital-acquired 31 (19.9) 

Abdominal sepsis 57 (36.5) 

Outcome  

28-day mortality 48 (30.8) 

90-day mortality 59 (37.8) 

1-year mortality 77 (49.4) 

 644 

Data presented as median [Q1-Q3], or n (%).  645 

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; ICU, Intensive care 646 

unit; GI, gastrointestinal; SOFA, Sequential Organ Failure Assessment. 647 

 648 

  649 
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Figure legends 650 

Figure 1. Coding and non-coding RNA expression in leukocytes of sepsis patients and healthy 651 

individuals. (A) Principal component (PC) plot depicting PC1 and PC2, and (B) the molecular 652 

distance to health (MDTH) index of protein-coding (n=18,063), long non-coding (n=16,087) and 653 

small non-coding RNAs (n=4949) in healthy subjects and sepsis patients. ** p<0.01; 654 

***p<0.001. (C) Volcano plot representation of differences in coding and non-coding RNA 655 

expression between sepsis patients and healthy subjects. Horizontal (black) line denotes -log10 656 

transformed adjusted p-value of 0.01. (D) Pie chart showing the subclass distribution of 657 

significant long non-coding RNA (adjusted p < 0.01). LincRNA, long intergenic non-coding 658 

RNA; rRNA, ribosomal RNA; TEC, To be Experimentally Confirmed; Mt tRNA, mitochondrial 659 

transfer RNA; Mt rRNA, mitochondrial ribosomal RNA. (E) Pie chart showing the subclass 660 

distribution of significant small non-coding RNA (adjusted p < 0.01). miRNA, microRNA; 661 

snoRNA, small nucleolar RNA; C/D box snoRNA, C/D box small mucleolar RNA; H/ACA box 662 

snoRNA, H/ACA box small mucleolar RNA; scaRNA, small cajal body-specific RNA. 663 

 664 

Figure 2. Variance in coding and non-coding RNA expression attributed to demographics and 665 

clinical characteristics of sepsis patients. (A) Violin plots of percent variation in protein-coding, 666 

long and small non-coding RNA expression explained by sepsis patient demographics and 667 

clinical variables. Black dots depict outlier RNA transcripts. (B) Percent variance of select 668 

protein-coding and long non-coding RNA partitioned into the segment attributable to each 669 

demographic and clinical variable ranked by percent variation (>20%) for primary diagnosis (site 670 

of infection and place of acquisition). (C) Volcano plots depicting the changes in protein-coding 671 

and long non-coding RNA in patients discordant for septic shock on ICU admission. Horizontal 672 

(black) line denotes the adjusted p-value threshold for significance (adjusted p ≤ 0.01). 673 
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Abbreviations: BC+, blood culture positive microbiology; diagnosis, infection site (lung or 674 

abdomen) and source (community or hospital); Charlson, Charlson comorbidity index; Apache 675 

IV, Acute Physiology and Chronic Health Evaluation; ICU, Intensive care unit; SOFA, 676 

Sequential Organ Failure Assessment. 677 

 678 

Figure 3. Comparison of the coding and non-coding transcriptome in sepsis to human 679 

endotoxemia. (A) Dot plots depicting the correlation between protein-coding RNA fold 680 

expression indices in sepsis (compared to health) and fold expression after 2, 4, 6, 24 hours LPS 681 

infusion relative to pre-LPS. (B) Pie chart illustrating the biotypes of significantly altered long 682 

non-coding RNA (adjusted p < 0.01) across endotoxemia time points (2, 4, 6 and 24 hours after 683 

2ng/kg lipopolysaccharide (LPS)). LincRNA, long intergenic non-coding RNA; rRNA, ribosomal 684 

RNA; TEC, To be Experimentally Confirmed; Mt tRNA, mitochondrial transfer RNA; Mt rRNA, 685 

mitochondrial ribosomal RNA. (C) Pie chart showing the biotypes of significantly altered small 686 

non-coding RNA (adjusted p < 0.05) in human endotoxemia. miRNA, microRNA; snoRNA, 687 

small nucleolar RNA; C/D box snoRNA, C/D box small mucleolar RNA; H/ACA box snoRNA, 688 

H/ACA box small mucleolar RNA; scaRNA, small cajal body-specific RNA. (D) Dot plots 689 

illustrating the correlation between long non-coding RNA fold expression indices in sepsis 690 

(compared to health) and fold expression of 2, 4, 6, 24 hours after LPS relative to pre-LPS. rho, 691 

Spearman’s coefficient. (E) Dot plots depicting the correlation between small non-coding RNA 692 

fold expression indices in sepsis (compared to health) and 2, 4, 6, 24 hours after LPS relative to 693 

pre-LPS. rho, Spearman’s coefficient. 694 

 695 

Figure 4. Network analysis of coding and non-coding RNA expression. (A) Circular plot of 696 

protein-coding and long non-coding co-expression network modules characterized by 697 
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significantly associated (Fisher’s adjusted p < 0.01) gene ontologies and Ingenuity canonical 698 

signaling pathways. Seventeen modules were associated to specific ontologies or canonical 699 

signaling pathways. (B) Bar plot depicting the distribution of protein coding and long non-coding 700 

RNA in each network module. * Fisher’s Benjamini-Hochberg adjusted p < 0.01. (C) Dot plot 701 

illustrating the correlation between intramodular and total connectivities of each RNA transcript 702 

in their respective network module. Yellow dots illustrate protein-coding and long non-coding 703 

RNA in the RNA biosynthesis/RNA binding module; Turquoise dots depict the cell death and 704 

olfactory receptor activity module (D) Diagrammatic representation of Ingenuity’s biofunctions 705 

(z-score<2 or >2 and adjusted p < 0.05) together with predicted long intergenic non-coding RNA 706 

(lincRNA) and antisense RNA in the cell death/olfactory receptor activity/cell-cycle G2/M DNA 707 

damage checkpoint and regulation module (turquoise). Blue, reduced expression; red, elevated 708 

expression in sepsis relative to health (fold change ≥ 1.2 or ≤ -1.2; adjusted p-value < 0.01). (E)  709 

Violin plots of network module eigengene (first principal component) percent variance 710 

attributable to small non-coding RNA.  711 

 712 

Figure 5. Relationship of protein-coding, non-coding RNA network modules to soluble 713 

mediators and clinical severity. (A) Heatmap representation of Pearson correlation coefficients 714 

(adjusted p < 0.05) calculated for each network module eigengene (first principal component) 715 

against soluble mediators of inflammation, endothelial function, coagulation, as well as clinical 716 

parameters of disease severity. APACHE IV, Acute Physiology and Chronic Health Evaluation; 717 

SOFA, Sequential Organ Failure Assessment. Red denotes direct correlations and blue denotes 718 

indirect correlations (B) Boxplot showing differences in neutrophil degranulation (red) module 719 

eigengene values in sepsis patients discordant for septic shock on intensive care unit admission. 720 

High module eigengene values mean overall elevated RNA expression; low module eigengene 721 
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values mean reduced expression. (C) Diagrammatic representation of the neutrophil 722 

degranulation (secretory; red) module (Ingenuity’s biofunction z-score<2 or >2; adjusted p < 723 

0.05) together with predicted long intergenic non-coding RNA (lincRNA) and antisense RNA. 724 

Red or blue nodes denote high or low expression RNA transcripts in sepsis relative to health, 725 

respectively. *** Mann-Whitney p<0.001. (D and E) Dot plots of (D) MYOSLID expression and 726 

(E) LUCAT1 expression against soluble mediators of inflammation IL-6, IL-8 and IL-10, as well 727 

as the acute phase response protein CRP. Rho, Spearman’s coefficient. 728 

 729 

  730 
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Supplementary File 731 

 732 

Patients  733 

Comorbidities were defined as follows: Cardiovascular compromise was defined as a medical 734 

history of congestive heart failure, chronic cardiovascular disease, myocardial infarction, 735 

peripheral vascular disease or cerebrovascular disease. Malignancy was defined as a medical 736 

history of either metastatic or not metastatic solid tumor, or hemodynamic malignancy. Patients 737 

with a history of chronic renal insufficiency, or treated with chronic intermittent hemodialysis or 738 

continuous ambulatory peritoneal dialysis were marked as renal insufficient. Respiratory 739 

insufficiency included patients with a history of chronic respiratory insufficiency, chronic 740 

obstructive pulmonary disease, or treated at home with oxygen or ventilator support. Patients 741 

with a history of immune deficiency, human immunodeficiency virus (HIV) infection, acquired 742 

immune deficiency syndrome (AIDS), asplenia, or chronically treated with corticosteroids, 743 

antineoplastic or other immune suppressive medications were deemed immunocompromised.  744 

 745 

Supplementary File Legends 746 

Supplementary File 1. Table of causative pathogens in critically ill patients with sepsis (n=156). 747 

Percentages depict the proportion of infections caused by the pathogen indicated. In total, 192 748 

pathogens were assigned to 156 infections. In 40 (25.6%) infections, more than one pathogen was 749 

assigned as causative.  750 

Figure 1 - figure supplement 1. Ingenuity pathway analysis of significant protein-coding RNA 751 

in sepsis relative to health. Red bars denote pathways harboring protein-coding RNA with 752 

elevated expression; turquoise bars denote pathways harboring protein-coding RNA with reduced 753 
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expression. Significance was demarcated at Benjamini-Hochberg (BH) adjusted p < 0.01. -754 

log(BH) p, negative log-transformed BH p-value. 755 

Figure 2 - figure supplement 1. (A) Violin plots of percent variation in protein-coding, long and 756 

small non-coding RNA expression explained by age in gender in healthy subjects (n=82). Black 757 

dots depict outlier RNA. (B) Expression of long non-coding RNA TXLNGY, LINC00278 and 758 

XIST in healthy males and females. (C) Volcano plot of significantly altered protein-coding RNA 759 

in non-survivors relative to survivors after 28 days since ICU admission. Horizontal (black) line 760 

denotes -log10 transformed adjusted p-value thresholds. 761 

Figure 3 - figure supplement 1. (A) Volcano plot representation of significantly altered protein-762 

coding RNA after 2, 4, 6 and 24 hours lipopolysaccharide (LPS) infusion relative to pre-LPS. 763 

Horizontal (black) line denotes -log10 transformed adjusted p-value threshold of 0.01. (B-D) 764 

Ingenuity pathway analysis of significant protein-coding RNA after 2, 4 and 6 hours human 765 

endotoxemia. Red bars denote pathways harboring protein-coding RNA with elevated expression; 766 

turquoise bars denote pathways harboring protein-coding RNA with reduced expression. 767 

Significance was demarcated at Benjamini-Hochberg (BH) adjusted p < 0.01. Adjusted P, 768 

negative log-transformed BH p-value.  769 

Figure 3 - figure supplement 2. Volcano plot representations of significantly altered (A) long 770 

non-coding RNA and (B) small non-coding RNA after 2, 4, 6 and 24 hours lipopolysaccharide 771 

(LPS) relative to pre-LPS. Horizontal (black) line denotes -log10 transformed adjusted p-value 772 

thresholds.  773 

Figure 4 - figure supplement 1. Co-expression network analysis. (A) Evaluation of scale free 774 

topology model fit and mean connectivities (y-axes) across various soft threshold powers (x-axis) 775 
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with scale independence denoted at R
2 
> 0.85 (red horizontal line) for protein-coding and long 776 

non-coding RNA expression in sepsis patients (n=8539). (B) Topological overlap plot of 777 

adjacencies calculated for 8539 protein-coding and long non-coding RNA expression and module 778 

colors. (C) Cytoscape plot (organic layout) of protein-coding and long non-coding RNA (nodes) 779 

and connectivities (edges; weight > 0.2). Turquoise and yellow modules were visibly central to 780 

the co-expression network. 781 

 782 
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